Enzymatic surface modification of cellulose acetate fibre by cutinase-CBM (carbohydrate-binding module) fusion proteins

2011 ◽  
Vol 30 (2) ◽  
pp. 184-189 ◽  
Author(s):  
Yao Zhang ◽  
Sheng Chen ◽  
Jing Wu ◽  
Jian Chen
2005 ◽  
Vol 18 (10) ◽  
pp. 497-501 ◽  
Author(s):  
Emily M. Kwan ◽  
Alisdair B. Boraston ◽  
Bradley W. McLean ◽  
Douglas G. Kilburn ◽  
R. Antony J. Warren

2011 ◽  
Vol 16 (4) ◽  
pp. 645-653 ◽  
Author(s):  
Yao Zhang ◽  
Sheng Chen ◽  
Miao He ◽  
Jing Wu ◽  
Jian Chen ◽  
...  

Desalination ◽  
2011 ◽  
Vol 266 (1-3) ◽  
pp. 78-86 ◽  
Author(s):  
Ramzi Hadj Lajimi ◽  
Ezdine Ferjani ◽  
Mohamed Sadok Roudesli ◽  
André Deratani

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3175
Author(s):  
Mariana Barbosa ◽  
Hélvio Simões ◽  
Duarte Miguel F. Prazeres

Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.


FEBS Journal ◽  
2015 ◽  
Vol 282 (22) ◽  
pp. 4341-4356 ◽  
Author(s):  
Renee M. Happs ◽  
Xiaoyang Guan ◽  
Michael G. Resch ◽  
Mark F. Davis ◽  
Gregg T. Beckham ◽  
...  

2004 ◽  
Vol 238 (1) ◽  
pp. 71-78
Author(s):  
Fernando M.V. Dias ◽  
Arun Goyal ◽  
Harry J. Gilbert ◽  
José A.M. Prates ◽  
Luís M.A. Ferreira ◽  
...  

2010 ◽  
Vol 192 (24) ◽  
pp. 6492-6493 ◽  
Author(s):  
Angel Angelov ◽  
Susanne Liebl ◽  
Meike Ballschmiter ◽  
Mechthild Bömeke ◽  
Rüdiger Lehmann ◽  
...  

ABSTRACT Spirochaeta thermophila is a thermophilic, free-living anaerobe that is able to degrade various α- and β-linked sugar polymers, including cellulose. We report here the complete genome sequence of S. thermophila DSM 6192, which is the first genome sequence of a thermophilic, free-living member of the Spirochaetes phylum. The genome data reveal a high density of genes encoding enzymes from more than 30 glycoside hydrolase families, a noncellulosomal enzyme system for (hemi)cellulose degradation, and indicate the presence of a novel carbohydrate-binding module.


Sign in / Sign up

Export Citation Format

Share Document