scholarly journals Inhibition of the NF-κB Pathway in Human Intestinal Epithelial Cells by Commensal Streptococcus salivarius

2011 ◽  
Vol 77 (13) ◽  
pp. 4681-4684 ◽  
Author(s):  
Ghalia Kaci ◽  
Omar Lakhdari ◽  
Joël Doré ◽  
S. Dusko Ehrlich ◽  
Pierre Renault ◽  
...  

ABSTRACTStreptococcus salivariusexhibited an anti-inflammatory effect on intestinal epithelial cells (IECs) and monocytes. Strains were screened using a reporter clone, HT-29/kB-luc-E, induced by tumor necrosis factor alpha (TNF-α). Supernatant from each strain downregulated NF-κB activation. The two most efficient strains produced an active metabolite (<3 kDa) which was able to downregulate the secretion of the proinflammatory chemokine interleukin-8 (IL-8).

2009 ◽  
Vol 20 (20) ◽  
pp. 4412-4423 ◽  
Author(s):  
Arianne L. Theiss ◽  
Aaron K. Jenkins ◽  
Ngozi I. Okoro ◽  
Jan-Michael A. Klapproth ◽  
Didier Merlin ◽  
...  

Expression of prohibitin 1 (PHB), a multifunctional protein in the cell, is decreased during inflammatory bowel disease (IBD). Little is known regarding the regulation and role of PHB during intestinal inflammation. We examined the effect of tumor necrosis factor alpha (TNF-α), a cytokine that plays a central role in the pathogenesis of IBD, on PHB expression and the effect of sustained PHB expression on TNF-α activation of nuclear factor-kappa B (NF-κB) and epithelial barrier dysfunction, two hallmarks of intestinal inflammation. We show that TNF-α decreased PHB protein and mRNA abundance in intestinal epithelial cells in vitro and in colon mucosa in vivo. Sustained expression of prohibitin in intestinal epithelial cells in vitro and in vivo (prohibitin transgenic mice, PHB TG) resulted in a marked decrease in TNF-α–induced nuclear translocation of the NF-κB protein p65, NF-κB/DNA binding, and NF-κB–mediated transcriptional activation despite robust IκB-α phosphorylation and degradation and increased cytosolic p65. Cells overexpressing PHB were protected from TNF-α–induced increased epithelial permeability. Expression of importin α3, a protein involved in p50/p65 nuclear import, was decreased in cells overexpressing PHB and in colon mucosa of PHB TG mice. Restoration of importin α3 levels sustained NF-κB activation by TNF-α during PHB transfection. These results suggest that PHB inhibits NF-κB nuclear translocation via a novel mechanism involving alteration of importin α3 levels. TNF-α decreases PHB expression in intestinal epithelial cells and restoration of PHB expression in these cells can protect against the deleterious effects of TNF-α and NF-κB on barrier function.


2011 ◽  
Vol 79 (7) ◽  
pp. 2597-2607 ◽  
Author(s):  
Poonam Dharmani ◽  
Jaclyn Strauss ◽  
Christian Ambrose ◽  
Emma Allen-Vercoe ◽  
Kris Chadee

ABSTRACTThe etiology of inflammatory bowel disease is not completely known, but it is influenced by the presence of normal gut microflora as well as yet-unrecognized pathogens. The anaerobic, Gram-negative bacterial speciesFusobacterium nucleatumis a common resident of the human mouth and gut and varies in its pathogenic potential. In this study, we demonstrate that highly invasiveF. nucleatumisolates derived from the inflamed guts of Crohn's disease patients evoked significantly greater MUC2 and tumor necrosis factor alpha (TNF-α) gene expression than minimally invasive strains isolated from the noninflamed gut in human colonic epithelial cells and in a rat ligated colonic loop model of infection. Only liveF. nucleatuminduced mucin secretion and TNF-α expression in direct contact with and/or during invasion of colonic cells. In rat colons, mucin secretion was augmented in response to a highly invasiveF. nucleatumisolate but was unaffected by treatment with a minimally invasive strain. Taken together, these studies reveal thatF. nucleatummay represent a challenging pathogen in the etiology of gut inflammatory diseases and highlight the importance of different pathotypes of candidate bacterial species in disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document