Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae
ABSTRACTAmmonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae,Osmundaria volubilis,Phyllophora crispa, andLaminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA andamoAgenes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterialamoAgenes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOAamoAgene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related toNitrosospiraspp. and toNitrosomonas europaeaand only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific forL. rodriguezii, 3 forO. volubilis, and 9 forP. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions.