scholarly journals Biochemical and Mutational Analyses of a Multidomain Cellulase/Mannanase from Caldicellulosiruptor bescii

2012 ◽  
Vol 78 (7) ◽  
pp. 2230-2240 ◽  
Author(s):  
Xiaoyun Su ◽  
Roderick I. Mackie ◽  
Isaac K. O. Cann

ABSTRACTThermophilic cellulases and hemicellulases are of significant interest to the biofuel industry due to their perceived advantages over their mesophilic counterparts. We describe here biochemical and mutational analyses ofCaldicellulosiruptor besciiCel9B/Man5A (CbCel9B/Man5A), a highly thermophilic enzyme. As one of the highly secreted proteins ofC. bescii, the enzyme is likely to be critical to nutrient acquisition by the bacterium. CbCel9B/Man5A is a modular protein composed of three carbohydrate-binding modules flanked at the N terminus and the C terminus by a glycoside hydrolase family 9 (GH9) module and a GH5 module, respectively. Based on truncational analysis of the polypeptide, the cellulase and mannanase activities within CbCel9B/Man5A were assigned to the N- and C-terminal modules, respectively. CbCel9B/Man5A and its truncational mutants, in general, exhibited a pH optimum of ∼5.5 and a temperature optimum of 85°C. However, at this temperature, thermostability was very low. After 24 h of incubation at 75°C, the wild-type protein maintained 43% activity, whereas a truncated mutant, TM1, maintained 75% activity. The catalytic efficiency with phosphoric acid swollen cellulose as a substrate for the wild-type protein was 7.2 s−1ml/mg, and deleting the GH5 module led to a mutant (TM1) with a 2-fold increase in this kinetic parameter. Deletion of the GH9 module also increased the apparentkcatof the truncated mutant TM5 on several mannan-based substrates; however, a concomitant increase in theKmled to a decrease in the catalytic efficiencies on all substrates. These observations lead us to postulate that the two catalytic activities are coupled in the polypeptide.

1998 ◽  
Vol 329 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Esther YÁÑEZ ◽  
A. Teresa CARMONA ◽  
Mercedes TIEMBLO ◽  
Antonio JIMÉNEZ ◽  
María FERNÁNDEZ-LOBATO

The role of N-linked glycosylation on the biological activity of Schwanniomyces occidentalis SWA2 α-amylase, as expressed in Saccharomyces cerevisiae, was analysed by site-directed mutagenesis of the two potential N-glycosylation sites, Asn-134 and Asn-229. These residues were replaced by Ala or Gly individually or in various combinations and the effects on the activity, secretion and thermal stability of the enzyme were studied. Any Asn-229 substitution caused a drastic decrease in activity levels of the extracellular enzyme. In contrast, substitutions of Asn-134 had little or no effect. The use of antibodies showed that α-amylase was secreted in all the mutants tested, although those containing substitutions at Asn-229 seemed to have a lower rate of synthesis and/or higher degradation than the wild-type strain. α-Amylases with substitution at Asn-229 had a 2 kDa lower molecular mass than the wild-type protein, as did the wild-type protein itself after treatment with endoglycosidase F. These findings indicate that Asn-229 is the single glycosylated residue in SWA2. Thermostability analysis of both purified wild-type (T50 = 50 °C, where T50 is the temperature resulting in 50% loss of activity) and mutant enzymes indicated that removal of carbohydrate from the 229 position results in a decrease of approx. 3 °C in the T50 of the enzyme. The Gly-229 mutation does not change the apparent affinity of the enzyme for starch (Km) but decreases to 1/22 its apparent catalytic efficiency (kcat/Km). These results therefore indicate that glycosylation at the 229 position has an important role in the extracellular activity levels, kinetics and stability of the Sw. occidentalis SWA2 α-amylase in both its wild-type and mutant forms.


2012 ◽  
Vol 56 (4) ◽  
pp. 2099-2107 ◽  
Author(s):  
Andrew G. S. Warrilow ◽  
Jonathan G. L. Mullins ◽  
Claire M. Hull ◽  
Josie E. Parker ◽  
David C. Lamb ◽  
...  

ABSTRACTThe effects of S279F and S279Y point mutations inCandida albicansCYP51 (CaCYP51) on protein activity and on substrate (lanosterol) and azole antifungal binding were investigated. Both S279F and S279Y mutants bound lanosterol with 2-fold increased affinities (Ks, 7.1 and 8.0 μM, respectively) compared to the wild-type CaCYP51 protein (Ks, 13.5 μM). The S279F and S279Y mutants and the wild-type CaCYP51 protein bound fluconazole, voriconazole, and itraconazole tightly, producing typical type II binding spectra. However, the S279F and S279Y mutants had 4- to 5-fold lower affinities for fluconazole, 3.5-fold lower affinities for voriconazole, and 3.5- to 4-fold lower affinities for itraconazole than the wild-type CaCYP51 protein. The S279F and S279Y mutants gave 2.3- and 2.8-fold higher 50% inhibitory concentrations (IC50s) for fluconazole in a CYP51 reconstitution assay than the wild-type protein did. The increased fluconazole resistance conferred by the S279F and S279Y point mutations appeared to be mediated through a combination of a higher affinity for substrate and a lower affinity for fluconazole. In addition, lanosterol displaced fluconazole from the S279F and S279Y mutants but not from the wild-type protein. Molecular modeling of the wild-type protein indicated that the oxygen atom of S507 interacts with the second triazole ring of fluconazole, assisting in orientating fluconazole so that a more favorable binding conformation to heme is achieved. In contrast, in the two S279 mutant proteins, this S507-fluconazole interaction is absent, providing an explanation for the higherKdvalues observed.


2012 ◽  
Vol 78 (19) ◽  
pp. 7048-7059 ◽  
Author(s):  
Libin Ye ◽  
Xiaoyun Su ◽  
George E. Schmitz ◽  
Young Hwan Moon ◽  
Jing Zhang ◽  
...  

ABSTRACTA large polypeptide encoded in the genome of the thermophilic bacteriumCaldicellulosiruptor besciiwas determined to consist of two glycoside hydrolase (GH) modules separated by two carbohydrate-binding modules (CBMs). Based on the detection of mannanase and endoglucanase activities in the N-terminal GH5 and the C-terminal GH44 module, respectively, the protein was designated CbMan5B/Cel44A. A GH5 module with >99% identity from the same organism was characterized previously (X. Su, R. I. Mackie, and I. K. Cann, Appl. Environ. Microbiol.78:2230-2240, 2012); therefore, attention was focused on CbMan5A/Cel44A-TM2 (or TM2), which harbors the GH44 module and the two CBMs. On cellulosic substrates, TM2 had an optimal temperature and pH of 85°C and 5.0, respectively. Although the amino acid sequence of the GH44 module of TM2 was similar to those of other GH44 modules that hydrolyzed cello-oligosaccharides, cellulose, lichenan, and xyloglucan, it was unique that TM2 also displayed modest activity on mannose-configured substrates and xylan. The TM2 protein also degraded Avicel with higher specific activity than activities reported for its homologs. The GH44 catalytic module is composed of a TIM-like domain and a β-sandwich domain, which consists of one β-sheet at the N terminus and nine β-sheets at the C terminus. Deletion of one or more β-sheets from the β-sandwich domain resulted in insoluble proteins, suggesting that the β-sandwich domain is essential for proper folding of the polypeptide. Combining TM2 with three other endoglucanases fromC. besciiled to modest synergistic activities during degradation of cellulose, and based on our results, we propose a model for cellulose hydrolysis and utilization byC. bescii.


2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Jordan F. Russell ◽  
Matthew L. Russo ◽  
Xuewen Wang ◽  
Neal Hengge ◽  
Daehwan Chung ◽  
...  

ABSTRACT Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases. IMPORTANCE Caldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.


2012 ◽  
Vol 79 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Evelina Kulcinskaja ◽  
Anna Rosengren ◽  
Romany Ibrahim ◽  
Katarína Kolenová ◽  
Henrik Stålbrand

ABSTRACTThe gene encoding β-mannanase (EC 3.2.1.78) BaMan26A from the bacteriumBifidobacterium adolescentis(living in the human gut) was cloned and the gene product characterized. The enzyme was found to be modular and to contain a putative signal peptide. It possesses a catalytic module of the glycoside hydrolase family 26, a predicted immunoglobulin-like module, and two putative carbohydrate-binding modules (CBMs) of family 23. The enzyme is likely cell attached either by the sortase mechanism (LPXTG motif) or via a C-terminal transmembrane helix. The gene was expressed inEscherichia coliwithout the native signal peptide or the cell anchor. Two variants were made: one containing all four modules, designated BaMan26A-101K, and one truncated before the CBMs, designated BaMan26A-53K. BaMan26A-101K, which contains the CBMs, showed an affinity to carob galactomannan having a dissociation constant of 0.34 μM (8.8 mg/liter), whereas BaMan26A-53K did not bind, showing that at least one of the putative CBMs of family 23 is mannan binding. For BaMan26A-53K,kcatwas determined to be 444 s−1andKm21.3 g/liter using carob galactomannan as the substrate at the optimal pH of 5.3. Both of the enzyme variants hydrolyzed konjac glucomannan, as well as carob and guar gum galactomannans to a mixture of oligosaccharides. The dominant product from ivory nut mannan was found to be mannotriose. Mannobiose and mannotetraose were produced to a lesser extent, as shown by high-performance anion-exchange chromatography. Mannobiose was not hydrolyzed, and mannotriose was hydrolyzed at a significantly lower rate than the longer oligosaccharides.


2013 ◽  
Vol 79 (13) ◽  
pp. 4072-4077 ◽  
Author(s):  
Xuguo Duan ◽  
Jian Chen ◽  
Jing Wu

ABSTRACTPullulanase (EC 3.2.1.41) is a well-known starch-debranching enzyme. Its instability and low catalytic efficiency are the major factors preventing its widespread application. To address these issues, Asp437 and Asp503 of the pullulanase fromBacillus deramificanswere selected in this study as targets for site-directed mutagenesis based on a structure-guided consensus approach. Four mutants (carrying the mutations D503F, D437H, D503Y, and D437H/D503Y) were generated and characterized in detail. The results showed that the D503F, D437H, and D503Y mutants had an optimum temperature of 55°C and a pH optimum of 4.5, similar to that of the wild-type enzyme. However, the half-lives of the mutants at 60°C were twice as long as that of the wild-type enzyme. In addition, the D437H/D503Y double mutant displayed a larger shift in thermostability, with an optimal temperature of 60°C and a half-life at 60°C of more than 4.3-fold that of the wild-type enzyme. Kinetic studies showed that theKmvalues for the D503F, D437H, D503Y, and D437H/D503Y mutants decreased by 7.1%, 11.4%, 41.4%, and 45.7% and theKcat/Kmvalues increased by 10%, 20%, 140%, and 100%, respectively, compared to those of the wild-type enzyme. Mechanisms that could account for these enhancements were explored. Moreover, in conjunction with the enzyme glucoamylase, the D503Y and D437H/D503Y mutants exhibited an improved reaction rate and glucose yield during starch hydrolysis compared to those of the wild-type enzyme, confirming the enhanced properties of the mutants. The mutants generated in this study have potential applications in the starch industry.


2013 ◽  
Vol 57 (8) ◽  
pp. 3976-3989 ◽  
Author(s):  
Jie Xue ◽  
Bart Hoorelbeke ◽  
Ioannis Kagiampakis ◽  
Borries Demeler ◽  
Jan Balzarini ◽  
...  

ABSTRACTGriffithsin (Grft) is a protein lectin derived from red algae that tightly binds the HIV envelope protein gp120 and effectively inhibits virus infection. This inhibition is due to the binding by Grft of high-mannose saccharides on the surface of gp120. Grft has been shown to be a tight dimer, but the role of the dimer in Grft's anti-HIV function has not been fully explored. To investigate the role of the Grft dimer in anti-HIV function, an obligate dimer of Grft was designed by expressing the protein with a peptide linker between the two subunits. This “Grft-linker-Grft” is a folded protein dimer, apparently nearly identical in structural properties to the wild-type protein. A “one-armed” obligate dimer was also designed (Grft-linker-Grft OneArm), with each of the three carbohydrate binding sites of one subunit mutated while the other subunit remained intact. While both constructed dimers retained the ability to bind gp120 and the viral surface, Grft-linker-Grft OneArm was 84- to 1,010-fold less able to inhibit HIV than wild-type Grft, while Grft-linker-Grft had near-wild-type antiviral potency. Furthermore, while the wild-type protein demonstrated the ability to alter the structure of gp120 by exposing the CD4 binding site, Grft-linker-Grft OneArm largely lost this ability. In experiments to investigate gp120 shedding, it was found that Grft has different effects on gp120 shedding for strains from subtype B and subtype C, and this might correlate with Grft function. Evidence is provided that the dimer form of Grft is critical to the function of this protein in HIV inhibition.


2020 ◽  
Vol 202 (8) ◽  
Author(s):  
Stephanie A. Ragland ◽  
Mary C. Gray ◽  
Elizabeth M. Melson ◽  
Melissa M. Kendall ◽  
Alison K. Criss

ABSTRACT The Gram-negative pathogen Neisseria gonorrhoeae (gonococcus [Gc]) colonizes lysozyme-rich mucosal surfaces. Lysozyme hydrolyzes peptidoglycan, leading to bacterial lysis. Gc expresses two proteins, SliC and NgACP, that bind and inhibit the enzymatic activity of lysozyme. SliC is a surface-exposed lipoprotein, while NgACP is found in the periplasm and also released extracellularly. Purified SliC and NgACP similarly inhibit lysozyme. However, whereas mutation of ngACP increases Gc susceptibility to lysozyme, the sliC mutant is only susceptible to lysozyme when ngACP is inactivated. In this work, we examined how lipidation contributes to SliC expression, cellular localization, and resistance of Gc to killing by lysozyme. To do so, we mutated the conserved cysteine residue (C18) in the N-terminal lipobox motif of SliC, the site for lipid anchor attachment, to alanine. SliC(C18A) localized to soluble rather than membrane fractions in Gc and was not displayed on the bacterial surface. Less SliC(C18A) was detected in Gc lysates compared to the wild-type protein. This was due in part to some release of the C18A mutant, but not wild-type, protein into the extracellular space. Surprisingly, Gc expressing SliC(C18A) survived better than SliC (wild type)-expressing Gc after exposure to lysozyme. We conclude that lipidation is not required for the ability of SliC to inhibit lysozyme, even though the lipidated cysteine is 100% conserved in Gc SliC alleles. These findings shed light on how members of the growing family of lysozyme inhibitors with distinct subcellular localizations contribute to bacterial defense against lysozyme. IMPORTANCE Neisseria gonorrhoeae is one of many bacterial species that express multiple lysozyme inhibitors. It is unclear how inhibitors that differ in their subcellular localization contribute to defense from lysozyme. We investigated how lipidation of SliC, an MliC (membrane-bound lysozyme inhibitor of c-type lysozyme)-type inhibitor, contributes to its localization and lysozyme inhibitory activity. We found that lipidation was required for surface exposure of SliC and yet was dispensable for protecting the gonococcus from killing by lysozyme. To our knowledge, this is the first time the role of lipid anchoring of a lysozyme inhibitor has been investigated. These results help us understand how different lysozyme inhibitors are localized in bacteria and how this impacts resistance to lysozyme.


2002 ◽  
Vol 80 (8) ◽  
pp. 999-1009 ◽  
Author(s):  
Joseph J Lundquist ◽  
Brendan M Kiburz ◽  
Jeffrey K Wu ◽  
Kenneth D Gibbs Jr. ◽  
Eric J Toone

Towards a better understanding of the molecular basis of affinity, a directed evolution of murine galectin-3 (G3) was initiated to produce mutants with improved affinity for lactose and N-acetyllactosamine relative to the wild-type protein. A series of N-terminal truncations were developed to facilitate incorporation of the 35 kDa protein into a phage-display construct. Analysis of the various assemblies revealed that all such deletions produced protein unsuitable for use in directed evolution studies. Following fusion of the full-length galectin to p3 of filamentous phage, three libraries were constructed and biopanned for increased affinity for lactose. The first two libraries, of 1 × 105 and 1 × 106 members, respectively, were assembled through a combination of error-prone PCR and DNA shuffling. A third library was constructed using a modified staggered extension protocol (StEP), but contained only 10 members. Mutants were also engineered site-specifically to test the role of key residues in or near the binding pocket. Analysis of the mutants by ITC identified one mutation (R158G) that produces a twofold increase in affinity for lactose and another that results in a sixfold increase in affinity for N-acetyllactosamine. Solid-phase binding analysis of phage for nonexpressing proteins indicated that two other mutants demonstrated increased binding to beta-methyllactose relative to the wild-type protein. Together these studies validate the evolutionary approach and set the stage for the development of novel carbohydrate-binding proteins.Key words: phage display, directed evolution, galectin, thermodynamics, carbohydrates.


Blood ◽  
2001 ◽  
Vol 98 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Mao-Fu Sun ◽  
Frank A. Baglia ◽  
David Ho ◽  
Danko Martincic ◽  
Russell E. Ware ◽  
...  

Abstract Variants of factor XI containing Gln226 to Arg (Q226 to R) and Ser248 to Asn (S248 to N) substitutions were first identified in an African American family with a history of excessive bleeding. The substitutions have recently been identified in unrelated individuals, suggesting they are relatively common. Both amino acids are located in the third apple domain of factor XI, an area implicated in binding interactions with factor IX and activated platelets. Recombinant factor XI–R226 and factor XI–N248 were compared with wild-type factor XI in assays for factor IX activation or platelet binding. Factor XI–R226 activates factor IX with a Michaelis-Menten constant (Km) about 5-fold greater than wild-type protein. The catalytic efficiency of factor IX activation is similar to wild-type protein, however, due to an increase in the turnover number (kcat) for the reaction. Iodinated factor XI–N248 binds to activated platelets with a dissociation constant (Kd) more than 5-fold higher than wild-type protein (55 nM and 10 nM, respectively). Activation of factor XI–N248 by thrombin in the presence of activated platelets is slower and does not progress to the same extent as activation of the wild-type protein under similar conditions. Factor XI–N248 activates factor IX normally in a purified protein system and has relatively normal activity in activated partial thromboplastin time (aPTT) assays. Factor XI–N248 is the first factor XI variant described with a clear functional difference compared with wild-type protein. Importantly, the defect in platelet binding would not be detected by routine clinical evaluation with an aPTT assay.


Sign in / Sign up

Export Citation Format

Share Document