scholarly journals Estimation of the Relative Abundance of DifferentBacteroides and Prevotella Ribotypes in Gut Samples by Restriction Enzyme Profiling of PCR-Amplified 16S rRNA Gene Sequences

1998 ◽  
Vol 64 (10) ◽  
pp. 3683-3689 ◽  
Author(s):  
Jacqueline Wood ◽  
Karen P. Scott ◽  
Gorazd Avguštin ◽  
C. James Newbold ◽  
Harry J. Flint

ABSTRACT We describe an approach for determining the genetic composition ofBacteroides and Prevotellapopulations in gut contents based on selective amplification of 16S rRNA gene sequences (rDNA) followed by cleavage of the amplified material with restriction enzymes. The relative contributions of different ribotypes to total Bacteroides andPrevotella 16S rDNA are estimated after end labelling of one of the PCR primers, and the contribution ofBacteroides and Prevotellasequences to total eubacterial 16S rDNA is estimated by measuring the binding of oligonucleotide probes to amplified DNA.Bacteroides and Prevotella 16S rDNA accounted for between 12 and 62% of total eubacterial 16S rDNA in samples of ruminal contents from six sheep and a cow. Ribotypes 4, 5, 6, and 7, which include most cultivated rumen Prevotellastrains, together accounted for between 20 and 86% of the total amplified Bacteroides andPrevotella rDNA in these samples. The most abundantBacteroides or Prevotella ribotype in four animals, however, was ribotype 8, for which there is only one known cultured isolate, while ribotypes 1 and 2, which include many colonic Bacteroides spp., were the most abundant in two animals. This indicates that some abundantBacteroides and Prevotella groups in the rumen are underrepresented among cultured rumenPrevotella isolates. The approach described here provides a rapid, convenient, and widely applicable method for comparing the genotypic composition of bacterial populations in gut samples.

2015 ◽  
Author(s):  
Warrick Nelson ◽  
Sandrine Eveillard ◽  
Marie-Pierre Dubrana ◽  
Joseph Bové

“Candidatus Liberibacter africanus” (Laf) has long been recognised as a causal agent of the devastating citrus disease huanglongbing (HLB) or citrus greening. This species is currently restricted to Africa, the Arabian Peninsula and some Indian Ocean islands and vectored by the African citrus psyllid, Trioza erytreae. Blotchy mottle on citrus leaves is characteristic of the disease. Somewhat similar symptoms in the Rutaceous tree Calodendrum capensis (Cape Chestnut) resulted in the discovery of Laf outside commercial citrus crops in South Africa. This was classed as a subspecies of Laf (capensis, hence LafC). In subsequent surveys of both commercial citrus crops and Calodendrum, both natural and ornamental specimens, LafC was not found in the citrus crop, nor has Laf been found in C. capensis. HLB was reported from Madagascar in 1968 but no sequences from this source have so far been published. Until fairly recently, only the reference 16S rRNA gene sequences of Laf (L22533) and LafC (AF137368) had been deposited in GenBank. Both of these reference sequences contain a number of unresolved nucleotides. Resolving these nucleotide positions by aligning against more recently available sequences, it becomes evident that these unresolved positions represent one percentage point difference in similarity between Laf and LafC. The originally reported 97.4% similarity is therefore incorrect based on this new information. Recalculating the similarity on the full length 16S rDNA sequence results in 99.54% similarity, a value too high to justify a subspecies status. LafC should therefore be reduced to that of a haplotype of Laf. Further, the six 16S rRNA gene sequences currently available in GenBank identified as the species Laf separate into 2 haplotype groups. The 3 haplotypes of Laf are therefore LafA designated as the first accession sequenced (L22533), LafC for the former capensis subspecies and to recognise the prior use of this term, and LafB for the third haplotype not previously recognised. Thus the cryptic presence of 3 haplotypes is revealed by this review of the Laf 16S rDNA sequences.


2011 ◽  
Vol 76 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Antonio Del Casale ◽  
Paul V. Flanagan ◽  
Michael J. Larkin ◽  
Christopher C.R. Allen ◽  
Leonid A. Kulakov

2014 ◽  
Vol 63 (10) ◽  
pp. 1311-1315 ◽  
Author(s):  
Sonia Chatellier ◽  
Nathalie Mugnier ◽  
Françoise Allard ◽  
Bertrand Bonnaud ◽  
Valérie Collin ◽  
...  

The use of 16S rRNA gene sequences for microbial identification in clinical microbiology is accepted widely, and requires databases and algorithms. We compared a new research database containing curated 16S rRNA gene sequences in combination with the lca (lowest common ancestor) algorithm (RDB-LCA) to a commercially available 16S rDNA Centroid approach. We used 1025 bacterial isolates characterized by biochemistry, matrix-assisted laser desorption/ionization time-of-flight MS and 16S rDNA sequencing. Nearly 80 % of isolates were identified unambiguously at the species level by both classification platforms used. The remaining isolates were mostly identified correctly at the genus level due to the limited resolution of 16S rDNA sequencing. Discrepancies between both 16S rDNA platforms were due to differences in database content and the algorithm used, and could amount to up to 10.5 %. Up to 1.4 % of the analyses were found to be inconclusive. It is important to realize that despite the overall good performance of the pipelines for analysis, some inconclusive results remain that require additional in-depth analysis performed using supplementary methods.


2000 ◽  
Vol 38 (7) ◽  
pp. 2746-2749 ◽  
Author(s):  
John W. Sumner ◽  
Gregory A. Storch ◽  
Richard S. Buller ◽  
Allison M. Liddell ◽  
Steven L. Stockham ◽  
...  

Broad-range PCR primers were used to amplify part of thegroESL operon of the canine pathogen Ehrlichia ewingii, recently recognized as a human pathogen, and the murine pathogen Ehrlichia muris. Phylogenetic analysis supported the relationships among Ehrlichia species previously determined by comparison of 16S rRNA gene sequences. These sequences provide additional PCR targets for species for which few gene sequences have been determined.


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2007 ◽  
Vol 73 (20) ◽  
pp. 6682-6685 ◽  
Author(s):  
Daniel P. R. Herlemann ◽  
Oliver Geissinger ◽  
Andreas Brune

ABSTRACT The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.


Sign in / Sign up

Export Citation Format

Share Document