scholarly journals Detection and Identification of Decay Fungi in Spruce Wood by Restriction Fragment Length Polymorphism Analysis of Amplified Genes Encoding rRNA

2000 ◽  
Vol 66 (11) ◽  
pp. 4725-4734 ◽  
Author(s):  
Claudia A. Jasalavich ◽  
Andrea Ostrofsky ◽  
Jody Jellison

ABSTRACT We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region.

1983 ◽  
Vol 61 (1) ◽  
pp. 171-173 ◽  
Author(s):  
E. L. Schmidt ◽  
D. W. French

Successive collections of basidiospores, produced in culture from the same hymenial areas of four species of wood decay fungi, were tested for spore germination percentage on malt extract agar under controlled conditions. Spores from white rot fungi retained high germination levels after 5 weeks of spore production, but germination averages for brown rot fungi decreased by more than 50%. Such variation should be considered in wood pathology research using spore germination bioassay.


1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


2010 ◽  
Vol 76 (11) ◽  
pp. 3599-3610 ◽  
Author(s):  
Amber Vanden Wymelenberg ◽  
Jill Gaskell ◽  
Michael Mozuch ◽  
Grzegorz Sabat ◽  
John Ralph ◽  
...  

ABSTRACT Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.


Holzforschung ◽  
2009 ◽  
Vol 63 (6) ◽  
Author(s):  
Jane Silveira Carneiro ◽  
Luciano Emmert ◽  
Gerson H. Sternadt ◽  
Julio César Mendes ◽  
Getúlio F. Almeida

Abstract A total of 28 tropical Amazon woods – many of them rarely used – from Tapajós National Forest, Pará state, Brazil, were tested for their natural resistance against the decay fungi: Ganoderma applanatum, Trametes versicolor, Pycnoporus sanguineus, Meruliporia incrassata, and Gloeophyllum trabeum. The wood resistance classification was made according to the ASTM D 2017-81 method. High variability on susceptibility to wood decay fungi was found. Their mean weight losses varied from 0.6% to 45.6%. Highly resistant species include: Astronium gracile, Bagassa guianensis, Caryocar villosum, Claricia racemosa, Diplotropis purpurea, Dipteryx odorata, Hymenaea courbaril, Manilkara huberi, Mezilaurus itauba, Sextonia rubra, Tabebuia incana, and Vatairea paraensis. The following wood species are less durable: Brosimum parinarioides, Jacaranda copaia, Laetia procera, Pouteria pachycarpa, Virola caducifolia, and Trattinnickia rhoifolia. Meruliporia incrassata caused extensive weight losses in most of the investigated Amazon wood species.


2016 ◽  
Vol 82 (14) ◽  
pp. 4387-4400 ◽  
Author(s):  
Oleksandr Skyba ◽  
Dan Cullen ◽  
Carl J. Douglas ◽  
Shawn D. Mansfield

ABSTRACTIdentification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi,Rhodonia placenta(formerlyPostia placenta) andPhanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-oldPopulus trichocarpa(poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold,P< 0.05) inP. chrysosporiumandP. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold,P< 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles ofP. chrysosporiumandP. placentaare influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode “proteins of unknown function,” and determining their role in lignocellulose degradation presents opportunities and challenges for future research.IMPORTANCEThis study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.


2020 ◽  
Vol 44 ◽  
Author(s):  
Carlos Garrido Pinheiro ◽  
Nadia Helena Bianchini ◽  
Alana Silveira Pavlack ◽  
Marlove Fátima Brião Muniz ◽  
Victor Dos Santos Barboza ◽  
...  

ABSTRACT Ergosterol is responsible for important functions in the fungal plasma membrane. The influence of fungitoxic agents on membrane ergosterol content is one of the most important mechanisms of antifungal action and its knowledge allows the generation of products that associate active compounds of different mechanisms, consequently improving the effectiveness of wood preservatives. Therefore, this study optimized a method for quantifying ergosterol in wood-decay fungi. The white-rot species selected were Ganoderma applanatum and Trametes versicolor, while the brown-rot were Gloeophyllum trabeum and Lentinus lepideus. Mycelial discs of each species were transferred to Petri dishes containing a cellophane-covered potato-dextrose-agar medium. Mycelia of each fungus were collected, weighed, and transferred to test tubes with 5 mL of 25% alcoholic potassium hydroxide. The tubes were vortexed for 5 min, subjected to ultrasound for 5 min, incubated at 85 °C for 4 h, followed by the addition of 2 mL of sterile distilled water and 5 mL of n-heptane and subsequent ultrasound shaking for 2 min. The n-heptane layer was analyzed by UV spectrophotometry between 230 and 300 ηm. The blank sample only contained n-heptane. The mycelia wet weight of the fungi ranged from 0.061 to 0.296 g. Ergosterol content was 0.007% for Lentinus lepideus and 0.004% for the other species. The absorbance was higher than the ones observed in the blank for all samples. The adapted method was efficient for ergosterol extraction.


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 606-614 ◽  
Author(s):  
Jing Wang ◽  
Jian Li ◽  
Shujun Li ◽  
Camille Freitag ◽  
J. J. Morrell

Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1) The gas chromatography-mass spectrometry (GC-MS) analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39%) and the ethyl acetate extract (9.43%). (2) Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteusand two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.


Holzforschung ◽  
2004 ◽  
Vol 58 (6) ◽  
pp. 682-687 ◽  
Author(s):  
Jonathan S. Schilling ◽  
Jody Jellison

AbstractTwo brown-rot wood decay fungi,Fomitopsis pinicolaandMeruliporia incrassata, and the white-rot speciesPhanerochaete chrysosporiumwere grown for 4 weeks in liquid culture at 0.35, 0.70, 1.05, and 5.00 mM calcium (Ca) and 1.35 and 2.70 mM magnesium (Mg) concentrations. Soluble and total oxalate levels were quantified using a revised ion-exchange HPLC protocol developed specifically for resolving oxalate and other organic acid anions from medium components. Total oxalate concentrations in brown-rot filtrate were not significantly different among treatments; however, soluble oxalate decreased significantly with increasing Ca concentration. Higher Mg concentrations increased soluble oxalate levels only slightly. There was a significant decrease in medium pH at 5.00 mM Ca for all species, as well as an apparent increase in decarboxylation activity in brown-rot fungi. Total and soluble oxalate levels in the white-rot cultures were generally below detection for all treatments. The results show a significant influence of Ca on soluble oxalate concentrations not seen previously in the brown-rot speciesPostia placenta.


Author(s):  
Mateusz Kozicki ◽  
Anna Wiejak ◽  
Michał Piasecki ◽  
Alicja Abram

Volatile fungal metabolites are responsible for various odors and may contribute to a “sick building syndrome” (SBS) with a negative effect on the heath of building. The authors have attempted to fill the research gaps by analyzing microbial volatile organic compounds (MVOCs) originating from representatives of the Basidiomycetes class that grow on wood-polymer composite (WPC) boards. WPCs have been analyzed as a material exposed to biodeterioration. Indoor air quality (IAQ) is affected by the increased use of WPCs inside buildings, and is becoming a highly relevant research issue. The emission profiles of MVOCs at various stages of WPC decay have been demonstrated in detail for Coniophora puteana and Poria placenta, and used to set the European industrial standards for wood-decay fungi. Differences in the production of MVOCs among these species of fungi have been detected using the thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method. This study identifies the production of alcohols, aldehydes, ketones, carboxylic acids and other compounds during one month of fungal growth. The identified level of metabolites indicates a relation between the level of air pollution and condition of the WPC material, which may become part of IAQ quantification in the future. The study points to the species-specific compounds for representatives of brown and white-rot fungi and the compounds responsible for their odor. In this study, 1-Octen-3-ol was indicated as a marker for their active growth, which is also associated with SBS. The proposed experimental set-up and data analysis are a simple and convenient way to obtain emission profiles of MVOCs from microbes growing on different materials.


Sign in / Sign up

Export Citation Format

Share Document