scholarly journals Effects of Agronomic Treatments on Structure and Function of Ammonia-Oxidizing Communities

2000 ◽  
Vol 66 (12) ◽  
pp. 5410-5418 ◽  
Author(s):  
Carol J. Phillips ◽  
Dave Harris ◽  
Sherry L. Dollhopf ◽  
Katherine L. Gross ◽  
James I. Prosser ◽  
...  

ABSTRACT The aim of this study was to determine the effects of different agricultural treatments and plant communities on the diversity of ammonia oxidizer populations in soil. Denaturing gradient gel electrophoresis (DGGE), coupled with specific oligonucleotide probing, was used to analyze 16S rRNA genes of ammonia oxidizers belonging to the β subgroup of the division Proteobacteria by use of DNA extracted from cultivated, successional, and native deciduous forest soils. Community profiles of the different soil types were compared with nitrification rates and most-probable-number (MPN) counts. Despite significant variation in measured nitrification rates among communities, there were no differences in the DGGE banding profiles of DNAs extracted from these soils. DGGE profiles of DNA extracted from samples of MPN incubations, cultivated at a range of ammonia concentrations, showed the presence of bands not amplified from directly extracted DNA. Nitrosomonas-like bands were seen in the MPN DNA but were not detected in the DNA extracted directly from soils. These bands were detected in some samples taken from MPN incubations carried out with medium containing 1,000 μg of NH4 +-N ml−1, to the exclusion of bands detected in the native DNA. Cell concentrations of ammonia oxidizers determined by MPN counts were between 10- and 100-fold lower than those determined by competitive PCR (cPCR). Although no differences were seen in ammonia oxidizer MPN counts from the different soil treatments, cPCR revealed higher numbers in fertilized soils. The use of a combination of traditional and molecular methods to investigate the activities and compositions of ammonia oxidizers in soil demonstrates differences in fine-scale compositions among treatments that may be associated with changes in population size and function.

2008 ◽  
Vol 74 (15) ◽  
pp. 4877-4888 ◽  
Author(s):  
Pedro A. Dimitriu ◽  
Holly C. Pinkart ◽  
Brent M. Peyton ◽  
Melanie R. Mormile

ABSTRACT The microbial community diversity and composition of meromictic Soap Lake were studied using culture-dependent and culture-independent approaches. The water column and sediments were sampled monthly for a year. Denaturing gradient gel electrophoresis of bacterial and archaeal 16S rRNA genes showed an increase in diversity with depth for both groups. Late-summer samples harbored the highest prokaryotic diversity, and the bacteria exhibited less seasonal variability than the archaea. Most-probable-number assays targeting anaerobic microbial guilds were performed to compare summer and fall samples. In both seasons, the anoxic samples appeared to be dominated by lactate-oxidizing sulfate-reducing prokaryotes. High numbers of lactate- and acetate-oxidizing iron-reducing bacteria, as well as fermentative microorganisms, were also found, whereas the numbers of methanogens were low or methanogens were undetectable. The bacterial community composition of summer and fall samples was also assessed by constructing 16S rRNA gene clone libraries. A total of 508 sequences represented an estimated >1,100 unique operational taxonomic units, most of which were from the monimolimnion, and the summer samples were more diverse than the fall samples (Chao1 = 530 and Chao1 = 295, respectively). For both seasons, the mixolimnion sequences were dominated by Gammaproteobacteria, and the chemocline and monimolimnion libraries were dominated by members of the low-G+C-content group, followed by the Cytophaga-Flexibacter-Bacteroides (CFB) group; the mixolimnion sediments contained sequences related to uncultured members of the Chloroflexi and the CFB group. Community overlap and phylogenetic analyses, however, not only demonstrated that there was a high degree of spatial turnover but also suggested that there was a degree of temporal variability due to differences in the members and structures of the communities.


2005 ◽  
Vol 71 (12) ◽  
pp. 8085-8090 ◽  
Author(s):  
Sonja K. Fagervold ◽  
Joy E. M. Watts ◽  
Harold D. May ◽  
Kevin R. Sowers

ABSTRACT Three species within a deeply branching cluster of the Chloroflexi are the only microorganisms currently known to anaerobically transform polychlorinated biphenyls (PCBs) by the mechanism of reductive dechlorination. A selective PCR primer set was designed that amplifies the 16S rRNA genes of a monophyletic group within the Chloroflexi including Dehalococcoides spp. and the o-17/DF-1 group. Assays for both qualitative and quantitative analyses by denaturing gradient gel electrophoresis and most probable number-PCR, respectively, were developed to assess sediment microcosm enrichments that reductively dechlorinated PCBs 101 (2,2′,4,5,5′-CB) and 132 (2,2′,3,3′,4,6′-CB). PCB 101 was reductively dechlorinated at the para-flanked meta position to PCB 49 (2,2′,4,5′-CB) by phylotype DEH10, which belongs to the Dehalococcoides group. This same species reductively dechlorinated the para- and ortho-flanked meta-chlorine of PCB 132 to PCB 91 (2,2′,3′,4,6′-CB). However, another phylotype designated SF1, which is more closely related to the o-17/DF-1 group, was responsible for the subsequent dechlorination of PCB 91 to PCB 51 (2,2′,4,6′-CB). Using the selective primer set, an increase in 16S rRNA gene copies was observed only with actively dechlorinating cultures, indicating that PCB-dechlorinating activities by both phylotype DEH10 and SF1 were linked to growth. The results suggest that individual species within the Chloroflexi exhibit a limited range of congener specificities and that a relatively diverse community of species within a deeply branching group of Chloroflexi with complementary congener specificities is likely required for the reductive dechlorination of different PCBs congeners in the environment.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
A. E. Bernhard ◽  
J. Beltz ◽  
A. E. Giblin ◽  
B. J. Roberts

AbstractFew studies have focused on broad scale biogeographic patterns of ammonia oxidizers in coastal systems, yet understanding the processes that govern them is paramount to understanding the mechanisms that drive biodiversity, and ultimately impact ecosystem processes. Here we present a meta-analysis of 16 years of data of ammonia oxidizer abundance, diversity, and activity in New England (NE) salt marshes and 5 years of data from marshes in the Gulf of Mexico (GoM). Potential nitrification rates were more than 80x higher in GoM compared to NE marshes. However, nitrifier abundances varied between regions, with ammonia-oxidizing archaea (AOA) and comammox bacteria significantly greater in GoM, while ammonia-oxidizing bacteria (AOB) were more than 20x higher in NE than GoM. Total bacterial 16S rRNA genes were also significantly greater in GoM marshes. Correlation analyses of rates and abundance suggest that AOA and comammox are more important in GoM marshes, whereas AOB are more important in NE marshes. Furthermore, ratios of nitrifiers to total bacteria in NE were as much as 80x higher than in the GoM, suggesting differences in the relative importance of nitrifiers between these systems. Communities of AOA and AOB were also significantly different between the two regions, based on amoA sequences and DNA fingerprints (terminal restriction fragment length polymorphism). Differences in rates and abundances may be due to differences in salinity, temperature, and N loading between the regions, and suggest significantly different N cycling dynamics in GoM and NE marshes that are likely driven by strong environmental differences between the regions.


2001 ◽  
Vol 67 (4) ◽  
pp. 1902-1910 ◽  
Author(s):  
Ferran Garcia-Pichel ◽  
Alejandro López-Cortés ◽  
Ulrich Nübel

ABSTRACT We compared the community structures of cyanobacteria in four biological desert crusts from Utah's Colorado Plateau developing on different substrata. We analyzed natural samples, cultures, and cyanobacterial filaments or colonies retrieved by micromanipulation from field samples using microscopy, denaturing gradient gel electrophoresis, and sequencing of 16S rRNA genes. While microscopic analyses apparently underestimated the biodiversity of thin filamentous cyanobacteria, molecular analyses failed to retrieve signals for otherwise conspicuous heterocystous cyanobacteria with thick sheaths. The diversity found in desert crusts was underrepresented in currently available nucleotide sequence databases, and several novel phylogenetic clusters could be identified. Morphotypes fitting the description of Microcoleus vaginatus Gomont, dominant in most samples, corresponded to a tight phylogenetic cluster of probable cosmopolitan distribution, which was well differentiated from other cyanobacteria traditionally classified within the same genus. A new, diverse phylogenetic cluster, named “Xeronema,” grouped a series of thin filamentousPhormidium-like cyanobacteria. These were also ubiquitous in our samples and probably correspond to various botanicalPhormidium and Schizothrix spp., but they are phylogenetically distant from thin filamentous cyanobacteria from other environments. Significant differences in community structure were found among soil types, indicating that soil characteristics may select for specific cyanobacteria. Gypsum crusts were most deviant from the rest, while sandy, silt, and shale crusts were relatively more similar among themselves.


2014 ◽  
Vol 49 (3) ◽  
pp. 234-244
Author(s):  
Fang He ◽  
Fusheng Li ◽  
Haihong Zhou ◽  
Lingling Niu ◽  
Liguo Wang

In this research, biocompounds designed out of two polymers having different degradability was investigated for use as the sole carbon source and biofilm carrier to remove perchlorate in particle-fixed biofilm reactors. Both laboratory batch and column experiments were conducted with perchlorate contaminated groundwater. Batch experiments demonstrated clearly that ClO4– was removed from the aqueous phase readily and the degradation rate constants (k) changed in the range of 0.23–0.37 mg/L h as ClO4– concentration increased from 2 to 8 mg/L. Simultaneous perchlorate and nitrate degradation occurred in the polymer bioreactor. Effluent concentrations of perchlorate varied positively with temperature and fitted the Arrhenius equation expression as k=k20•100.0316(t–20) over the range of 13–30 °C. No perchlorate was detected in the effluent of polymer columns after 20 days’ startup. Complete perchlorate removal was observed at a hydraulic loading rate doubled to 1.8 mL/min. Images prove the concept of the pore and filament structure within the biocompounds, which provide both a heterotrophic biofilm and carbon source. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes indicated that formerly reported perchlorate-reducing bacteria were present in the polymer particle-fixed biofilm reactors.


1999 ◽  
Vol 65 (11) ◽  
pp. 5042-5049 ◽  
Author(s):  
Kuk-Jeong Chin ◽  
Dittmar Hahn ◽  
Ulf Hengstmann ◽  
Werner Liesack ◽  
Peter H. Janssen

ABSTRACT Most-probable-number (liquid serial dilution culture) counts were obtained for polysaccharolytic and saccharolytic fermenting bacteria in the anoxic bulk soil of flooded microcosms containing rice plants. The highest viable counts (up to 2.5 × 108 cells per g [dry weight] of soil) were obtained by using xylan, pectin, or a mixture of seven mono- and disaccharides as the growth substrate. The total cell count for the soil, as determined by using 4′,6-diamidino-2-phenylindole staining, was 4.8 × 108cells per g (dry weight) of soil. The nine strains isolated from the terminal positive tubes in counting experiments which yielded culturable populations that were equivalent to about 5% or more of the total microscopic count population belonged to the divisionVerrucomicrobia, theCytophaga-Flavobacterium-Bacteroides division, clostridial cluster XIVa, clostridial cluster IX, Bacillus spp., and the class Actinobacteria. Isolates originating from the terminal positive tubes of liquid dilution series can be expected to be representatives of species whose populations in the soil are large. None of the isolates had 16S rRNA gene sequences identical to 16S rRNA gene sequences of previously described species for which data are available. Eight of the nine strains isolated fermented sugars to acetate and propionate (and some also fermented sugars to succinate). The closest relatives of these strains (except for the two strains of actinobacteria) were as-yet-uncultivated bacteria detected in the same soil sample by cloning PCR-amplified 16S rRNA genes (U. Hengstmann, K.-J. Chin, P. H. Janssen, and W. Liesack, Appl. Environ. Microbiol. 65:5050–5058, 1999). Twelve other isolates, which originated from most-probable-number counting series indicating that the culturable populations were smaller, were less closely related to cloned 16S rRNA genes.


2004 ◽  
Vol 70 (2) ◽  
pp. 781-789 ◽  
Author(s):  
Nasreen Bano ◽  
Shomari Ruffin ◽  
Briana Ransom ◽  
James T. Hollibaugh

ABSTRACT Archaea assemblages from the Arctic Ocean and Antarctic waters were compared by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified using the Archaea-specific primers 344f and 517r. Inspection of the DGGE fingerprints of 33 samples from the Arctic Ocean (from SCICEX submarine cruises in 1995, 1996, and 1997) and 7 Antarctic samples from Gerlache Strait and Dallman Bay revealed that the richness of Archaea assemblages was greater in samples from deep water than in those from the upper water column in both polar oceans. DGGE banding patterns suggested that most of the Archaea ribotypes were common to both the Arctic Ocean and the Antarctic Ocean. However, some of the Euryarchaeota ribotypes were unique to each system. Cluster analysis of DGGE fingerprints revealed no seasonal variation but supported depth-related differences in the composition of the Arctic Ocean Archaea assemblage. The phylogenetic composition of the Archaea assemblage was determined by cloning and then sequencing amplicons obtained from the Archaea-specific primers 21f and 958r. Sequences of 198 clones from nine samples covering three seasons and all depths grouped with marine group I Crenarchaeota (111 clones), marine group II Euryarchaeota (86 clones), and group IV Euryarchaeota (1 clone). A sequence obtained only from a DGGE band was similar to those of the marine group III Euryarchaeota.


2006 ◽  
Vol 72 (1) ◽  
pp. 239-244 ◽  
Author(s):  
Nete Bernbom ◽  
Tine Rask Licht ◽  
Carl-Henrik Brogren ◽  
Birthe Jelle ◽  
Anette H. Johansen ◽  
...  

ABSTRACT This study examined the ability of (i) pure nisin, (ii) nisin-producing Lactococcus lactis strain CHCC5826, and (iii) the non-nisin-producing L. lactis strain CHCH2862 to affect the composition of the intestinal microbiota of human flora-associated rats. The presence of both the nisin-producing and the non-nisin-producing L. lactis strains significantly increased the number of Bifidobacterium cells in fecal samples during the first 8 days but decreased the number of enterococci/streptococci in duodenum, ileum, cecum, and colon samples as detected by selective cultivation. No significant changes in the rat fecal microbiota were observed after dosage with nisin. Pearson cluster analysis of denaturing gradient gel electrophoresis profiles of the 16S rRNA genes present in the fecal microbial population revealed that the microbiota of animals dosed with either of the two L. lactis strains were different from that of control animals dosed with saline. However, profiles of the microbiota from animals dosed with nisin did not differ from the controls. The concentrations of nisin estimated by competitive enzyme-linked immunosorbent assay (ELISA) were approximately 10-fold higher in the small intestine and 200-fold higher in feces than the corresponding concentrations estimated by a biological assay. This indicates that nisin was degraded or inactivated in the gastrointestinal tract, since fragments of this bacteriocin are detected by ELISA while an intact molecule is needed to retain biological activity.


2010 ◽  
Vol 56 (4) ◽  
pp. 352-355 ◽  
Author(s):  
Junmin Li ◽  
Zexin Jin ◽  
Binbin Yu

To explore changes in the structure and diversity of activated sludge-derived microbial communities during adaptation to gradual increases in the concentration of wastewater, RAPD–PCR and the combination of PCR amplification of 16S rRNA genes with denaturing gradient gel electrophoresis (DGGE) analysis were used. In bacterial communities exposed to 0%, 5%, 10%, 20%, or 40% wastewater, there were 27, 25, 18, 17 and 16 bands, respectively, based on DGGE data, while there were 69, 83, 97, 86, and 88 bands, respectively, based on RAPD data. The community similarity index among bacterial communities during the process of adaptation to different concentrations of wastewater was different based on DGGE and RAPD data. Based on DGGE and RAPD profiles, the Shannon–Weiner and Simpson’s diversity indices decreased sharply upon exposure to 10% wastewater, indicating that 10% wastewater might be a critical point at which the growth of bacteria could be significantly inhibited and the genotypic diversity could change. This indicated that changes in structure and diversity might have an inhibitory effect on the toxicity of organic matter and that selection and adaptation could play important roles in the changes.


2007 ◽  
Vol 73 (18) ◽  
pp. 5962-5967 ◽  
Author(s):  
Olga Sánchez ◽  
Josep M. Gasol ◽  
Ramon Massana ◽  
Jordi Mas ◽  
Carlos Pedrós-Alió

ABSTRACT An annual seasonal cycle of composition of a bacterioplankton community in an oligotrophic coastal system was studied by denaturing gradient gel electrophoresis (DGGE) using five different primer sets. Analysis of DGGE fingerprints showed that primer set 357fGC-907rM grouped samples according to seasons. Additionally, we used the set of 16S rRNA genes archived in the RDPII database to check the percentage of perfect matches of each primer for the most abundant bacterial groups inhabiting coastal plankton communities. Overall, primer set 357fGC-907rM was the most suitable for the routine use of PCR-DGGE analyses in this environment.


Sign in / Sign up

Export Citation Format

Share Document