scholarly journals Natural Assemblages of Marine Proteobacteria and Members of the Cytophaga-Flavobacter Cluster Consuming Low- and High-Molecular-Weight Dissolved Organic Matter

2000 ◽  
Vol 66 (4) ◽  
pp. 1692-1697 ◽  
Author(s):  
Matthew T. Cottrell ◽  
David L. Kirchman

ABSTRACT We used a method that combines microautoradiography with hybridization of fluorescent rRNA-targeted oligonucleotide probes to whole cells (MICRO-FISH) to test the hypothesis that the relative contributions of various phylogenetic groups to the utilization of dissolved organic matter (DOM) depend solely on their relative abundance in the bacterial community. We found that utilization of even simple low-molecular-weight DOM components by bacteria differed across the major phylogenetic groups and often did not correlate with the relative abundance of these bacterial groups in estuarine and coastal environments. The Cytophaga-Flavobacter cluster was overrepresented in the portion of the assemblage consuming chitin,N-acetylglucosamine, and protein but was generally underrepresented in the assemblage consuming amino acids. The amino acid-consuming assemblage was usually dominated by the α subclass of the class Proteobacteria, although the representation of α-proteobacteria in the protein-consuming assemblages was about that expected from their relative abundance in the entire bacterial community. In our experiments, no phylogenetic group dominated the consumption of all DOM, suggesting that the participation of a diverse assemblage of bacteria is essential for the complete degradation of complex DOM in the oceans. These results also suggest that the role of aerobic heterotrophic bacteria in carbon cycling would be more accurately described by using three groups instead of the single bacterial compartment currently used in biogeochemical models.

Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 150
Author(s):  
Yang Liu ◽  
Jinjun Kan ◽  
Jing Yang ◽  
Md Abu Noman ◽  
Jun Sun

Skeletonema dohrnii is a common red tide microalgae occurring in the coastal waters and throughout the world. The associated heterotrophic or autotrophic bacteria play vital roles in regulating algal growth, production, and physiology. In this study, we investigated the detailed bacterial community structure associated with the growth of S. dohrnii’s using high-throughput sequencing-based on 16S rDNA. Our results demonstrated that Bacteroidetes (48.04%) and Proteobacteria (40.66%) in all samples accounted for the majority of bacterial populations. There was a significant linear regression relationship between the abundance of bacterial phyla and culture time. Notable shifts in bacterial community composition were observed during algal growth: Flavobacteriales accounted for the vast majority of sequences at the order level. Furthermore, the relative abundance of Rhodobacterales was gradually reduced during the whole growth process of S. dohrnii (0–12 days). However, beyond that, the relative abundance of Marinobacter was slowly increasing. It is noteworthy that five fluorophores (Peaks T1, T2, I, M, and A) were detected during the growth stage of S. dohrnii. The characteristic indexes (fluorescence index, humification index, and biological index) of chromophoric dissolved organic matter (CDOM) also varied with the culture time. In addition, the taxa of bacteria had certain effects on CDOM and they were inextricably linked to each other.


2020 ◽  
Author(s):  
Giancarlo Bachi ◽  
Elisabetta Morelli ◽  
Margherita Gonnelli ◽  
Raffaella Casotti ◽  
Stefano Vestri ◽  
...  

<p>Phytoplankton is the primary source of Dissolved Organic Matter (DOM) to the oceans. DOM is mainly released by extracellular exudation and used by heterotrophic prokaryotes to synthesise biomass and recycle inorganic nutrients. DOM released by phytoplankton is mainly composed by carbohydrates, proteins and lipids that are thought to be labile and by humic substances that are thought to be recalcitrant and thus resistant to bacterial degradation. There are a lot of uncertainties regarding the biological lability of exudates and the role of DOM released by phytoplankton in the marine carbon cycle. In this study, cultures of the diatom P. tricornutum were produced under axenic conditions and Dissolved Organic Carbon (DOC) concentration, Excitation-Emission matrices (EEMs) and cell density were measured with time in order to follow the release of DOM during the different growth phases. Exudates were then inoculated with a marine microbial community for 24 days, DOC removal and FDOM transformation were followed with time in the exudates and in the permeate (< 3k Da; Low Molecular Weight, LMW) and retentate (> 3k Da; High Molecular Weight, HMW) fractions. Heterotrophic prokaryotes abundance was also followed during the incubations. Our results show that ~75% of the total DOC pool was LMW. After 24 days, 28% of the initial DOC pool was removed. Fluorescence indicate high lability of protein-like molecules and degradation of bigger proteins into smaller peptides before their removal. The production of humic-like and flavin-like substances was also observed.</p><p> </p>


2020 ◽  
Author(s):  
Greta Reintjes ◽  
Bernhard M. Fuchs ◽  
Mirco Scharfe ◽  
Karen H. Wiltshire ◽  
Rudolf Amann ◽  
...  

SummarySpring phytoplankton blooms in temperate environments contribute disproportionately to global marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a diatom-dominated bloom in the German Bight, North Sea. Polysaccharides can be taken up in a ‘selfish’ mode, where initial hydrolysis is coupled to transport into the periplasm, such that little to no low molecular weight (LMW) products are externally released to the environment. Alternatively, polysaccharides hydrolyzed by cell-surface attached or free extracellular enzymes (external hydrolysis) yield LMW products available to the wider bacterioplankton community. In the early bloom phase, selfish activity was accompanied by low extracellular hydrolysis rates of a few polysaccharides. As the bloom progressed, selfish uptake increased markedly, and external hydrolysis rates increased, but only for a limited range of substrates. The late bloom phase was characterized by high external hydrolysis rates of a broad range of polysaccharides, and reduced selfish uptake of polysaccharides, except for laminarin. Substrate utilization mode is related both to substrate structural complexity and to the bloom-stage dependent composition of the heterotrophic bacterial community.Originality statementThe means by which heterotrophic bacteria cooperate and compete to obtain substrates is a key factor determining the rate and location at which organic matter is cycled in the ocean. Much of this organic matter is high molecular weight (HMW), and must be enzymatically hydrolyzed to smaller pieces to be processed by bacterial communities. Some of these enzyme-producing bacteria are ‘selfish’, processing HMW organic matter without releasing low molecular weight (LMW) products to the environment. Other bacteria hydrolyze HMW substrates in a manner that releases LMW products to the wider bacterial community. How these mechanisms of substrate hydrolysis work against a changing background of organic matter supply is unclear. Here, we measured changing rates and mechanisms of substrate processing during the course of a natural phytoplankton bloom in the North Sea. Selfish bacteria generally dominate in the initial bloom stages, but a greater supply of increasingly complex substrates in later bloom stages leads to external hydrolysis of a wider range of substrates, increasing the supply of LMW hydrolysis products to the wider bacterial community.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


Sign in / Sign up

Export Citation Format

Share Document