scholarly journals Degradation of Triphenyltin by a Fluorescent Pseudomonad

2000 ◽  
Vol 66 (8) ◽  
pp. 3492-3498 ◽  
Author(s):  
Hiroyuki Inoue ◽  
Osamu Takimura ◽  
Hiroyuki Fuse ◽  
Katsuji Murakami ◽  
Kazuo Kamimura ◽  
...  

ABSTRACT Triphenyltin (TPT)-degrading bacteria were screened by a simple technique using a post-column high-performance liquid chromatography using 3,3′,4′,7-tetrahydroxyflavone as a post-column reagent for determination of TPT and its metabolite, diphenyltin (DPT). An isolated strain, strain CNR15, was identified as Pseudomonas chlororaphis on the basis of its morphological and biochemical features. The incubation of strain CNR15 in a medium containing glycerol, succinate, and 130 μM TPT resulted in the rapid degradation of TPT and the accumulation of approximately 40 μM DPT as the only metabolite after 48 h. The culture supernatants of strain CNR15, grown with or without TPT, exhibited a TPT degradation activity, whereas the resting cells were not capable of degrading TPT. TPT was stoichiometrically degraded to DPT by the solid-phase extract of the culture supernatant, and benzene was detected as another degradation product. We found that the TPT degradation was catalyzed by low-molecular-mass substances (approximately 1,000 Da) in the extract, termed the TPT-degrading factor. The other fluorescent pseudomonads,P. chlororaphis ATCC 9446, Pseudomonas fluorescens ATCC 13525, and Pseudomonas aeruginosaATCC 15692, also showed TPT degradation activity similar to strain CNR15 in the solid-phase extracts of their culture supernatants. These results suggest that the extracellular low-molecular-mass substance that is universally produced by the fluorescent pseudomonad could function as a potent catalyst to cometabolite TPT in the environment.

Author(s):  
Klaudia Kokoszka ◽  
Agnieszka Kobus ◽  
Sylwia Bajkacz

The residues of antimicrobials used in human and veterinary medicine are popular pollutants of anthropogenic origin. The main sources of introducing antimicrobials into the environment are sewage treatment plants and the agricultural industry. Antimicrobials in animal manure contaminate the surrounding soil as well as groundwater, and can be absorbed by plants. The presence of antimicrobials in food of plant origin may pose a threat to human health due to their high biological activity. As part of the research, a procedure was developed for the extraction and determination of ciprofloxacin, enrofloxacin, cefuroxime, nalidixic acid and metronidazole in environmental samples (soil and parsley root). An optimized solid-liquid extraction (SLE) method was used to separate antimicrobials from the solid samples and a mixture of citrate buffer (pH = 4): methanol (1:1; v/v) was used as the extraction solvent. Solid phase extraction (SPE) with OASIS® HLB cartridges was used to purify and pre-concentrate the sample. The recovery of the developed method was in the range of 55–108%. Analytes were determined by high-performance liquid chromatography coupled with an ultraviolet (UV) detector and a tandem mass spectrometer (HPLC-UV-MS/MS). The procedure was validated and applied to the determination of selected antimicrobials in soil and parsley root samples. Five types of soil and five types of parsley roots of different origins were analyzed. The presence of nalidixic acid in the parsley root samples was found in the concentration range of 0.14–0.72 ng g−1. It has been shown that antimicrobials are absorbed by the plant and can accumulate antimicrobials in its edible parts.


Sign in / Sign up

Export Citation Format

Share Document