scholarly journals Phylogenetic Analysis of Bacterial Communities in Mesophilic and Thermophilic Bioreactors Treating Pharmaceutical Wastewater

2000 ◽  
Vol 66 (9) ◽  
pp. 3951-3959 ◽  
Author(s):  
Timothy M. LaPara ◽  
Cindy H. Nakatsu ◽  
Lisa Pantea ◽  
James E. Alleman

ABSTRACT The phylogenetic diversity of the bacterial communities supported by a seven-stage, full-scale biological wastewater treatment plant was studied. These reactors were operated at both mesophilic (28 to 32�C) and thermophilic (50 to 58�C) temperatures. Community fingerprint analysis by denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V3 region of the 16S rRNA gene from the domainBacteria revealed that these seven reactors supported three distinct microbial communities. A band-counting analysis of the PCR-DGGE results suggested that elevated reactor temperatures corresponded with reduced species richness. Cloning of nearly complete 16S rRNA genes also suggested a reduced species richness in the thermophilic reactors by comparing the number of clones with different nucleotide inserts versus the total number of clones screened. While these results imply that elevated temperature can reduce species richness, other factors also could have impacted the number of populations that were detected. Nearly complete 16S rDNA sequence analysis showed that the thermophilic reactors were dominated by members from the β subdivision of the divisionProteobacteria (β-proteobacteria) in addition to anaerobic phylotypes from the low-G+C gram-positive andSynergistes divisions. The mesophilic reactors, however, included at least six bacterial divisions, includingCytophaga-Flavobacterium-Bacteroides,Synergistes, Planctomycetes, low-G+C gram-positives, Holophaga-Acidobacterium, andProteobacteria (α-proteobacteria, β-proteobacteria, γ-proteobacteria and δ-proteobacteria subdivisions). The two PCR-based techniques detected the presence of similar bacterial populations but failed to coincide on the relative distribution of these phylotypes. This suggested that at least one of these methods is insufficiently quantitative to determine total community biodiversity—a function of both the total number of species present (richness) and their relative distribution (evenness).

2005 ◽  
Vol 71 (2) ◽  
pp. 904-911 ◽  
Author(s):  
Hiroyuki Futamata ◽  
Yayoi Nagano ◽  
Kazuya Watanabe ◽  
Akira Hiraishi

ABSTRACT A chemostat enrichment of soil bacteria growing on phenol as the sole carbon source has been shown to exhibit quite high trichloroethylene (TCE)-degrading activities (H. Futamata, S. Harayama, and K. Watanabe, Appl. Environ. Microbiol. 67:4671-4677, 2001). To identify the bacterial populations responsible for the high TCE-degrading activity, a multidisciplinary survey of the chemostat enrichment was conducted by employing molecular-ecological and culture-dependent approaches. Three chemostat enrichment cultures were newly developed under different phenol-loading conditions (0.25, 0.75, and 1.25 g liter−1 day−1) in this study, and the TCE-degrading activities of the enrichments were measured. Among them, the enrichment at 0.75 g liter−1 day−1 (enrichment 0.75) expressed the highest activity. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments detected a Variovorax ribotype as the strongest band in enrichment 0.75; however, it was not a major ribotype in the other samples. Bacteria were isolated from enrichment 0.75 by direct plating, and their 16S rRNA genes and genes encoding the largest subunit of phenol hydroxylase (LmPHs) were analyzed. Among the bacteria isolated, several strains were affiliated with the genus Variovorax and were shown to have high-affinity-type LmPHs. The LmPH of the Variovorax strains was also detected as the major genotype in enrichment 0.75. Kinetic analyses of phenol and TCE degradation revealed, however, that these strains exhibited quite low affinity for phenol compared to other phenol-degrading bacteria, while they showed quite high specific TCE-degrading activities and relatively high affinity for TCE. Owing to these unique kinetic traits, the Variovorax strains can obviate competitive inhibition of TCE degradation by the primary substrate of the catabolic enzyme (i.e., phenol), contributing to the high TCE-degrading activity of the chemostat enrichments. On the basis of physiological information, mechanisms accounting for the way the Variovorax population overgrew the chemostat enrichment are discussed.


1999 ◽  
Vol 65 (11) ◽  
pp. 4855-4862 ◽  
Author(s):  
Corinne B. Whitby ◽  
Jon R. Saunders ◽  
Juana Rodriguez ◽  
Roger W. Pickup ◽  
Alan McCarthy

ABSTRACT The population of ammonia-oxidizing bacteria in a temperate oligotrophic freshwater lake was analyzed by recovering 16S ribosomal DNA (rDNA) from lakewater and sediment samples taken throughout a seasonal cycle. Nitrosospira and Nitrosomonas16S rRNA genes were amplified in a nested PCR, and the identity of the products was confirmed by oligonucleotide hybridization.Nitrosospira DNA was readily identified in all samples, and nitrosomonad DNA of the Nitrosomonas europaea-Nitrosomonas eutropha lineage was also directly detected, but during the summer months only. Phylogenetic delineation with partial (345 bp) 16S rRNA gene sequences of clones obtained from sediments confirmed the fidelity of the amplified nitrosomonad DNA and identified two sequence clusters closely related to either N. europaea or N. eutropha that were equated with the littoral and profundal sediment sites, respectively. Determination of 701-bp sequences for 16S rDNA clones representing each cluster confirmed this delineation. A PCR-restriction fragment length polymorphism (RFLP) system was developed that enabled identification of clones containing N. europaea and N. eutropha 16S rDNA sequences, including subclasses therein. It proved possible to analyze 16S rDNA amplified directly from sediment samples to determine the relative abundance of each species compared with that of the other. N. europaea and N. eutropha are very closely related, and direct evidence for their presence in lake systems is limited. The correlation of each species with a distinct spatial location in sediment is an unusual example of niche adaptation by two genotypically similar bacteria. Their occurrence and relative distribution can now be routinely monitored in relation to environmental variation by the application of PCR-RFLP analysis.


2008 ◽  
Vol 74 (15) ◽  
pp. 4877-4888 ◽  
Author(s):  
Pedro A. Dimitriu ◽  
Holly C. Pinkart ◽  
Brent M. Peyton ◽  
Melanie R. Mormile

ABSTRACT The microbial community diversity and composition of meromictic Soap Lake were studied using culture-dependent and culture-independent approaches. The water column and sediments were sampled monthly for a year. Denaturing gradient gel electrophoresis of bacterial and archaeal 16S rRNA genes showed an increase in diversity with depth for both groups. Late-summer samples harbored the highest prokaryotic diversity, and the bacteria exhibited less seasonal variability than the archaea. Most-probable-number assays targeting anaerobic microbial guilds were performed to compare summer and fall samples. In both seasons, the anoxic samples appeared to be dominated by lactate-oxidizing sulfate-reducing prokaryotes. High numbers of lactate- and acetate-oxidizing iron-reducing bacteria, as well as fermentative microorganisms, were also found, whereas the numbers of methanogens were low or methanogens were undetectable. The bacterial community composition of summer and fall samples was also assessed by constructing 16S rRNA gene clone libraries. A total of 508 sequences represented an estimated >1,100 unique operational taxonomic units, most of which were from the monimolimnion, and the summer samples were more diverse than the fall samples (Chao1 = 530 and Chao1 = 295, respectively). For both seasons, the mixolimnion sequences were dominated by Gammaproteobacteria, and the chemocline and monimolimnion libraries were dominated by members of the low-G+C-content group, followed by the Cytophaga-Flexibacter-Bacteroides (CFB) group; the mixolimnion sediments contained sequences related to uncultured members of the Chloroflexi and the CFB group. Community overlap and phylogenetic analyses, however, not only demonstrated that there was a high degree of spatial turnover but also suggested that there was a degree of temporal variability due to differences in the members and structures of the communities.


1999 ◽  
Vol 65 (2) ◽  
pp. 422-430 ◽  
Author(s):  
Ulrich Nübel ◽  
Ferran Garcia-Pichel ◽  
Michael Kühl ◽  
Gerard Muyzer

ABSTRACT We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity of 16S rRNA genes from oxygenic phototrophic microorganisms was investigated by extraction of total DNA from mat samples, amplification of 16S rRNA gene segments from cyanobacteria and plastids of eukaryotic algae by phylum-specific PCR, and sequence-dependent separation of amplification products by denaturing-gradient gel electrophoresis. A numerical approach was introduced to correct for crowding the results of chromatographic and electrophoretic analyses. Diversity estimates typically varied up to twofold among mats. The congruence of richness estimates and Shannon-Weaver indices based on numbers and proportional abundances of unique morphotypes, 16S rRNA genes, and carotenoids unveiled the underlying diversity of oxygenic phototrophic microorganisms in the eight mat communities studied.


2007 ◽  
Vol 57 (6) ◽  
pp. 1295-1303 ◽  
Author(s):  
Ute Lechner ◽  
Danny Brodkorb ◽  
Roland Geyer ◽  
Gerd Hause ◽  
Claus Härtig ◽  
...  

Strains L10T, L108 and CIP I-2052 were originally obtained from methyl tert-butyl ether (MTBE)-contaminated groundwater and from a wastewater treatment plant, respectively. All share the ability to grow on tert-butanol, an intermediate of MTBE degradation. Cells are strictly aerobic, motile by a polar flagellum and exhibit strong pili formation. Poly β-hydroxybutyrate (PHB) granules are formed. The DNA G+C content is 69–70.5 mol% and the main ubiquinone is Q-8. The major cellular fatty acids are 16 : 1 cis-9 and 16 : 0 and the only hydroxy fatty acid is 10 : 0 3-OH. The major phospholipids are phosphatidylethanolamine (PE) 16 : 1/16 : 1 and phosphatidylglycerol 16 : 0/16 : 1. A significant amount of PE 17 : 0/16 : 1 is present. The 16S rRNA gene sequences of these strains are almost identical and form a separate line of descent in the Rubrivivax–Roseateles–Leptothrix–Ideonella–Aquabacterium branch of the Betaproteobacteria with 97 % similarity to 16S rRNA genes of the type strains of Rubrivivax gelatinosus, Leptothrix mobilis and Ideonella dechloratans. However, physiological properties, DNA–DNA relatedness values and the phospholipid and cellular fatty acid profiles distinguish the novel isolates from the three closely related genera. Therefore, it is concluded that strains L10T, L108 and CIP I-2052 represent a new genus and novel species for which the name Aquincola tertiaricarbonis gen. nov., sp. nov., is proposed. The type strain is strain L10T (=DSM 18512T=CIP 109243T).


2004 ◽  
Vol 70 (10) ◽  
pp. 5801-5809 ◽  
Author(s):  
Vesela A. Tzeneva ◽  
Youguo Li ◽  
Andreas D. M. Felske ◽  
Willem M. de Vos ◽  
Antoon D. L. Akkermans ◽  
...  

ABSTRACT The worldwide presence of a hitherto-nondescribed group of predominant soil microorganisms related to Bacillus benzoevorans was analyzed after development of two sets of selective primers targeting 16S rRNA genes in combination with denaturing gradient gel electrophoresis (DGGE). The high abundance and cultivability of at least some of these microorganisms makes them an appropriate subject for studies on their biogeographical dissemination and diversity. Since cultivability can vary significantly with the physiological state and even between closely related strains, we developed a culture-independent 16S rRNA gene-targeted DGGE fingerprinting protocol for the detection of these bacteria from soil samples. The composition of the B. benzoevorans relatives in the soil samples from The Netherlands, Bulgaria, Russia, Pakistan, and Portugal showed remarkable differences between the different countries. Differences in the DGGE profiles of these communities in archived soil samples from the Dutch Wieringermeer polder were observed over time during which a shift from anaerobic to aerobic and from saline to freshwater conditions occurred. To complement the molecular methods, we additionally cultivated B. benzoevorans-related strains from all of the soil samples. The highest number of B. benzoevorans relatives was found in the soils from the northern part of The Netherlands. The present study contributes to our knowledge of the diversity and abundance of this interesting group of microbes in soils throughout the world.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lisa Paruch ◽  
Adam M. Paruch ◽  
Hans Geir Eiken ◽  
Monica Skogen ◽  
Roald Sørheim

Abstract Aquatic microbial diversity, composition, and dynamics play vital roles in sustaining water ecosystem functionality. Yet, there is still limited knowledge on bacterial seasonal dynamics in lotic environments. This study explores a temporal pattern of bacterial community structures in lotic freshwater over a 2-year period. The aquatic bacterial communities were assessed using Illumina MiSeq sequencing of 16S rRNA genes. Overall, the communities were dominated by α-, β-, and γ-Proteobacteria, Bacteroidetes, Flavobacteriia, and Sphingobacteriia. The bacterial compositions varied substantially in response to seasonal changes (cold vs. warm), but they were rather stable within the same season. Furthermore, higher diversity was observed in cold seasons compared to warm periods. The combined seasonal-environmental impact of different physico-chemical parameters was assessed statistically, and temperature, suspended solids, and nitrogen were determined to be the primary abiotic factors shaping the temporal bacterial assemblages. This study enriches particular knowledge on the seasonal succession of the lotic freshwater bacteria.


2007 ◽  
Vol 74 (3) ◽  
pp. 889-893 ◽  
Author(s):  
Zhongtang Yu ◽  
Rubén García-González ◽  
Floyd L. Schanbacher ◽  
Mark Morrison

ABSTRACT Different hypervariable (V) regions of the archaeal 16S rRNA gene (rrs) were compared systematically to establish a preferred V region(s) for use in Archaea-specific PCR-denaturing gradient gel electrophoresis (DGGE). The PCR products of the V3 region produced the most informative DGGE profiles and permitted identification of common methanogens from rumen samples from sheep. This study also showed that different methanogens might be detected when different V regions are targeted by PCR-DGGE. Dietary fat appeared to transiently stimulate Methanosphaera stadtmanae but inhibit Methanobrevibacter sp. strain AbM4 in rumen samples.


Sign in / Sign up

Export Citation Format

Share Document