scholarly journals Response of a Soil Bacterial Community to Grassland Succession as Monitored by 16S rRNA Levels of the Predominant Ribotypes

2000 ◽  
Vol 66 (9) ◽  
pp. 3998-4003 ◽  
Author(s):  
Andreas Felske ◽  
Arthur Wolterink ◽  
Robert Van Lis ◽  
Willem M. De Vos ◽  
Antoon D. L. Akkermans

ABSTRACT The composition of predominant soil bacteria during grassland succession was investigated in the Dutch Drentse A area. Five meadows, taken out of agricultural production at different time points, and one currently fertilized plot represented different stages of grassland succession. Since fertilization and agricultural production were stopped, the six plots showed a constant decline in the levels of nutrients and vegetation changes. The activity of the predominant bacteria was monitored by direct ribosome isolation from soil and temperature gradient gel electrophoresis of reverse transcription (RT)-PCR products generated from bacterial 16S rRNA. The amounts of 16S rRNA of 20 predominant ribosome types per gram of soil were monitored via multiple competitive RT-PCR in six plots at different succession stages. These ribosome types mainly represented Bacillusand members of the Acidobacterium cluster and the α subclass of the class Proteobacteria. The 20 16S rRNA molecules monitored represented approximately half of all bacterial soil rRNA which was estimated by dot blot hybridizations of soil rRNA with the Bacteria probe EUB338. The grasslands showed highly reproducible and specific shifts of bacterial ribosome type composition. The total bacterial ribosome level increased during the first years after agricultural production and fertilization stopped. This correlated with the collapse of the dominant Lolium perenne population and an increased rate of mineralization of organic matter. The results indicate that there is a true correlation between the total activity of the bacterial community in soil and the amount of bacterial ribosomes.

1999 ◽  
Vol 65 (2) ◽  
pp. 396-403 ◽  
Author(s):  
George A. Kowalchuk ◽  
Zinaida S. Naoumenko ◽  
Piet J. L. Derikx ◽  
Andreas Felske ◽  
John R. Stephen ◽  
...  

ABSTRACT Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous compound in composting material, and the conversion of this compound to nitrite in the environment by chemolithotrophic ammonia-oxidizing bacteria is an essential step in nitrogen cycling. Therefore, the distribution of ammonia-oxidizing members of the β subdivision of the class Proteobacteriain a variety of composting materials was assessed by amplifying 16S ribosomal DNA (rDNA) and 16S rRNA by PCR and reverse transcriptase PCR (RT-PCR), respectively. The PCR and RT-PCR products were separated by denaturing gradient gel electrophoresis (DGGE) and were identified by hybridization with a hierarchical set of oligonucleotide probes designed to detect ammonia oxidizer-like sequence clusters in the genera Nitrosospira and Nitrosomonas. Ammonia oxidizer-like 16S rDNA was detected in almost all of the materials tested, including industrial and experimental composts, manure, and commercial biofertilizers. A comparison of the DGGE and hybridization results after specific PCR and RT-PCR suggested that not all of the different ammonia oxidizer groups detected in compost are equally active. amoA, the gene encoding the active-site-containing subunit of ammonia monooxygenase, was also targeted by PCR, and template concentrations were estimated by competitive PCR. Detection of ammonia-oxidizing bacteria in the composts tested suggested that such materials may not be biologically inert with respect to nitrification and that the fate of nitrogen during composting and compost storage may be affected by the presence of these organisms.


2018 ◽  
Vol 16 (3) ◽  
pp. 543-551
Author(s):  
Tran Trung Thanh ◽  
Nathan Bott ◽  
Le Hoang Duc ◽  
Dang Thi Hoang Oanh ◽  
Nguyen Trung Nam ◽  
...  

Gut bacteria comprise a complex bacterial community related to many functions in a host. The stability of gut bacteria plays important models in the health and immunology of a host. Many studies on intestine bacteria constructed via cultivation and Denaturation Gradient Gel Electrophoresis (DDGE) methods have proved a limited efficiency. In order to tackle these drawbacks, the next generation sequencing method was developed on 16S-rRNA-based sequences (Metabarcoding). The composition of bacterial communities was revealed based on the analysis of 16S rRNA sequences of intestine bacteria in Litopenaeus vannamei ponds in comparison with microbial communities in a Penaeus monodon pond and a muscle of shrimp. These results showed that the dominant phyla of intestine bacteria in Litopenaeus vannamei were Proteobacteria (49.3–57.4%), Firmicutes (15.6–34.4%) and Bacteroidetes (0.1–16.9%). Rhizobium(0.4%-26.1%), Vibrio(0–23.9%) and Spongiimonas(0–16,7%) were dominant genera in Litopenaeus vannamei gut. A higher proportion of Fusobacterium (10%), a shrimp pathogen group, was found in a disease shrimp pond (ST4) in comparison with a low growth shrimp pond (ST3) (0%) and a healthy shrimp pond (ST1) (0.6%). Vibrio was marked as shrimp pathogen genus accounted for 22.3% of total genera in ST4 in comparison with 2.4% in ST3 and 3.5% in ST1. Interestingly, a higher percentage of Vibrio rotiferianus (7.98%) was found in ST4 compared to ST3 (1%) and ST1 (0%). Fusobacterium and Vibrio will be the objects for the next experiments to discover shrimp pathogens specifically.


2001 ◽  
Vol 67 (3) ◽  
pp. 1318-1327 ◽  
Author(s):  
Sabine Weber ◽  
Stephan Stubner ◽  
Ralf Conrad

ABSTRACT Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), andAcidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to theCytophaga-Flavobacterium cluster of theCytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the α, β, and γ Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.


1998 ◽  
Vol 64 (3) ◽  
pp. 871-879 ◽  
Author(s):  
Andreas Felske ◽  
Arthur Wolterink ◽  
Robert Van Lis ◽  
Antoon D. L. Akkermans

ABSTRACT The main bacteria in peaty, acid grassland soils in the Netherlands were investigated by ribosome isolation, temperature gradient gel electrophoresis, hybridization, cloning, and sequencing. Instead of using only 16S rDNA to determine the sequences present, we focused on rRNA to classify and quantify the most active bacteria. After direct ribosome isolation from soil, a partial amplicon of bacterial 16S rRNA was generated by reverse transcription-PCR. The sequence-specific separation by temperature gradient gel electrophoresis yielded soil-specific fingerprints, which were compared to signals from a clone library of genes coding for 16S rRNA. Cloned 16S rDNA sequences matching with intense bands in the fingerprint were sequenced. The relationships of the sequences to those of cultured organisms of known phylogeny were determined. Most of the amplicons originated from organisms closely related to Bacillus species. Such sequences were also detected by direct dot blot hybridization on soil rRNA: a probe specific for Firmicutes with low G+C content counted for about 50% of all bacterial rRNA. The bacterial activity in Drentse A grassland soil could be estimated by direct dot blot hybridization and sequencing of clones; it was found that about 65% of all the bacterial ribosomes originated from Firmicutes. The most active bacteria apparently were Bacillus species, from which about half of the sequences derived. Other sequences similar to those of gram-positive bacteria were only remotely related to known Firmicutes with a high G+C content. Other sequences were related to Proteobacteria, mainly the alpha subclass.


2001 ◽  
Vol 67 (1) ◽  
pp. 172-178 ◽  
Author(s):  
Bernadette M. Duineveld ◽  
George A. Kowalchuk ◽  
Anneke Keijzer ◽  
Jan Dirk van Elsas ◽  
Johannes A. van Veen

ABSTRACT The effect of developing chrysanthemum roots on the presence and activity of bacterial populations in the rhizosphere was examined by using culture-independent methods. Nucleic acids were extracted from rhizosphere soil samples associated with the bases of roots or root tips of plants harvested at different stages of development. PCR and reverse transcriptase (RT) PCR were used to amplify 16S ribosomal DNA (rDNA) and 16S rRNA, respectively, and the products were subjected to denaturing gradient gel electrophoresis (DGGE). Prominent DGGE bands were excised and sequenced to gain insight into the identities of predominantly present (PCR) and predominantly active (RT-PCR) bacterial populations. The majority of DGGE band sequences were related to bacterial genera previously associated with the rhizosphere, such asPseudomonas, Comamonas, Variovorax, and Acetobacter, or typical of root-free soil environments, such as Bacillus and Arthrobacter. The PCR-DGGE patterns observed for bulk soil were somewhat more complex than those obtained from rhizosphere samples, and the latter contained a subset of the bands present in bulk soil. DGGE analysis of RT-PCR products detected a subset of bands visible in the rDNA-based analysis, indicating that some dominantly detected bacterial populations did not have high levels of metabolic activity. The sequences detected by the RT-PCR approach were, however, derived from a wide taxonomic range, suggesting that activity in the rhizosphere was not determined at broad taxonomic levels but rather was a strain- or species-specific phenomenon. Comparative analysis of DGGE profiles grouped all DNA-derived root tip samples together in a cluster, and within this cluster the root tip samples from young plants formed a separate subcluster. Comparison of rRNA-derived bacterial profiles showed no grouping of root tip samples versus root base samples. Rather, all profiles derived from 2-week-old plant rhizosphere soils grouped together regardless of location along the root.


2007 ◽  
Vol 74 (3) ◽  
pp. 889-893 ◽  
Author(s):  
Zhongtang Yu ◽  
Rubén García-González ◽  
Floyd L. Schanbacher ◽  
Mark Morrison

ABSTRACT Different hypervariable (V) regions of the archaeal 16S rRNA gene (rrs) were compared systematically to establish a preferred V region(s) for use in Archaea-specific PCR-denaturing gradient gel electrophoresis (DGGE). The PCR products of the V3 region produced the most informative DGGE profiles and permitted identification of common methanogens from rumen samples from sheep. This study also showed that different methanogens might be detected when different V regions are targeted by PCR-DGGE. Dietary fat appeared to transiently stimulate Methanosphaera stadtmanae but inhibit Methanobrevibacter sp. strain AbM4 in rumen samples.


2005 ◽  
Vol 71 (7) ◽  
pp. 4144-4148 ◽  
Author(s):  
Sebastian R. Sørensen ◽  
Jim Rasmussen ◽  
Carsten S. Jacobsen ◽  
Ole S. Jacobsen ◽  
René K. Juhler ◽  
...  

ABSTRACT A bacterial community from Danish agricultural soil was enriched with linuron [N-(3,4-dichlorophenyl)-N′-methoxy-N′-methylurea] as the sole carbon and nitrogen source. The community mineralized [ring-U-14C]linuron completely to 14CO2 and 14C-biomass. Denaturing gradient gel electrophoresis analysis and cultivation revealed that a Variovorax sp. was responsible for the mineralization activity.


2006 ◽  
Vol 73 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Shabir A. Dar ◽  
Li Yao ◽  
Udo van Dongen ◽  
J. Gijs Kuenen ◽  
Gerard Muyzer

ABSTRACTHere we describe the diversity and activity of sulfate-reducing bacteria (SRB) in sulfidogenic bioreactors by using the simultaneous analysis of PCR products obtained from DNA and RNA of the 16S rRNA and dissimilatory sulfite reductase (dsrAB) genes. We subsequently analyzed the amplified gene fragments by using denaturing gradient gel electrophoresis (DGGE). We observed fewer bands in the RNA-based DGGE profiles than in the DNA-based profiles, indicating marked differences in the populations present and in those that were metabolically active at the time of sampling. Comparative sequence analyses of the bands obtained from rRNA anddsrBDGGE profiles were congruent, revealing the same SRB populations. Bioreactors that received either ethanol or isopropanol as an energy source showed the presence of SRB affiliated withDesulfobulbus rhabdoformisand/orDesulfovibrio sulfodismutans, as well as SRB related to the acetate-oxidizingDesulfobacca acetoxidans. The reactor that received wastewater containing a diverse mixture of organic compounds showed the presence of nutritionally versatile SRB affiliated withDesulfosarcina variabilisand another acetate-oxidizing SRB, affiliated withDesulfoarculus baarsii. In addition to DGGE analysis, we performed whole-cell hybridization with fluorescently labeled oligonucleotide probes to estimate the relative abundances of the dominant sulfate-reducing bacterial populations.Desulfobacca acetoxidans-like populations were most dominant (50 to 60%) relative to the total SRB communities, followed byDesulfovibrio-like populations (30 to 40%), andDesulfobulbus-like populations (15 to 20%). This study is the first to identify metabolically active SRB in sulfidogenic bioreactors by using the functional genedsrABas a molecular marker. The same approach can also be used to infer the ecological role of coexisting SRB in other habitats.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 320-320 ◽  
Author(s):  
S. Adkins ◽  
J. E. Polston ◽  
W. W. Turechek

Virus-like symptoms of leaf deformation and rugosity, especially of younger leaves, and a mild mosaic were observed on fresh market common (green) bean (Phaseolus vulgaris L.) plants in Hendry County in southwest Florida in December of 2007 and again in February of 2008. All bean fields were adjacent to watermelon fields in which Cucurbit leaf crumple virus (CuLCrV), Squash vein yellowing virus (SqVYV), and Papaya ringspot virus type W (PRSV-W) infections had previously been confirmed (fall of 2007) by PCR, reverse transcription (RT)-PCR, and/or ELISA. Whiteflies, Bemisia tabaci, were observed on both bean and watermelon plants in December and February. Fifteen samples (eleven with symptoms) were collected in December and two (both with symptoms) in February. Initial ELISA assays using commercially available antisera for potyviruses or Cucumber mosaic virus (Agdia, Elkhart, IN) were negative. Total nucleic acids were extracted and used for PCR testing. All samples tested negative by RT-PCR using specific primers for SqVYV, PRSV-W, and Cucurbit yellow stunting disorder virus, and degenerate primers for potyviruses. Ten of fifteen December samples (ten of eleven symptomatic samples) and both February samples yielded PCR products of the expected size with the degenerate begomovirus primers, PAR1c496/PAL1v1978, which amplify a portion of the begomovirus A component (3). PCR products from three December and both February samples were cloned and sequenced. The 1,159-nt PCR products shared 99% identity with each other and 96% identity with the corresponding region of A component sequences of Arizona and California CuLCrV isolates (GenBank Accession Nos. AF256200 and AF224760, respectively). Additional degenerate begomovirus primers PBL1v2040/PCRc154, which amplify a 381-nt portion of the hypervariable region of the begomovirus B component (3), and AC1048/AV494, which amplify a 533-nt portion of a conserved region of the coat protein gene (4), were used to confirm the identity of CuLCrV in the three December samples. The PBL1v2040/PCRc154 PCR products shared 98 to 99% identity with each other and 94 to 95% identity with the corresponding region of B component sequences of Arizona and California CuLCrV isolates (GenBank Accession Nos. AF327559 and AF224761, respectively), whereas the AC1048/AV494 PCR products shared 99% identity with each other and 97% identity with the corresponding region of A component sequences of Arizona and California CuLCrV isolates. Nucleic acid dot-blot hybridization assays of sap from homogenized leaves of the three December samples (from which the PCR product clones were obtained) with a digoxigenin-labeled CuLCrV cDNA probe also confirmed the presence of CuLCrV. Although CuLCrV has been reported to experimentally infect common bean and tobacco (2), to our knowledge, this is the first report of CuLCrV infecting any noncucurbit host in Florida. This finding suggests that CuLCrV may be more widely distributed than previously known in Florida (1) and that common bean (and potentially other legumes) are potential reservoirs for CuLCrV. References: (1) F. Akad et al. Plant Dis. 92:648, 2008. (2) J. K. Brown et al. Phytopathology 92:734, 2002. (3) M. R. Rojas et al. Plant Dis. 77:340, 1993. (4) S. D. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.


Sign in / Sign up

Export Citation Format

Share Document