scholarly journals Glucose Uptake in Clostridium beijerinckii NCIMB 8052 and the Solvent-Hyperproducing Mutant BA101

2001 ◽  
Vol 67 (11) ◽  
pp. 5025-5031 ◽  
Author(s):  
Jieun Lee ◽  
H. P. Blaschek

ABSTRACT Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts ofC. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052.C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.

2005 ◽  
Vol 71 (6) ◽  
pp. 3384-3387 ◽  
Author(s):  
Jieun Lee ◽  
Wilfrid J. Mitchell ◽  
Martin Tangney ◽  
H. P. Blaschek

ABSTRACT The effects of substrate analogs and energy inhibitors on glucose uptake and phosphorylation by Clostridium beijerinckii provide evidence for the operation of two uptake systems: a previously characterized phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a non-PTS system probably energized by the transmembrane proton gradient. In both wild-type C. beijerinckii NCIMB 8052 and the butanol-hyperproducing mutant BA101, PTS activity declined at the end of exponential growth, while glucokinase activity increased in the later stages of fermentation. The non-PTS uptake system, together with enhanced glucokinase activity, may provide an explanation for the ability of the mutant to utilize glucose more effectively during fermentation despite the fact that it is partially defective in PTS activity.


2011 ◽  
Vol 77 (11) ◽  
pp. 3571-3581 ◽  
Author(s):  
Steffen N. Lindner ◽  
Gerd M. Seibold ◽  
Alexander Henrich ◽  
Reinhard Krämer ◽  
Volker F. Wendisch

ABSTRACTPhosphoenolpyruvate-dependent glucose phosphorylation via the phosphotransferase system (PTS) is the major path of glucose uptake inCorynebacterium glutamicum, but some growth from glucose is retained in the absence of the PTS. The growth defect of a deletion mutant lacking the general PTS component HPr in glucose medium could be overcome by suppressor mutations leading to the high expression of inositol utilization genes or by the addition of inositol to the growth medium if a glucokinase is overproduced simultaneously. PTS-independent glucose uptake was shown to require at least one of the inositol transporters IolT1 and IolT2 as a mutant lacking IolT1, IolT2, and the PTS component HPr could not grow with glucose as the sole carbon source. Efficient glucose utilization in the absence of the PTS necessitated the overexpression of a glucokinase gene in addition to eitheriolT1oriolT2. IolT1 and IolT2 are low-affinity glucose permeases withKsvalues of 2.8 and 1.9 mM, respectively. As glucose uptake and phosphorylation via the PTS differs from glucose uptake via IolT1 or IolT2 and phosphorylation via glucokinase by the requirement for phosphoenolpyruvate, the roles of the two pathways forl-lysine production were tested. Thel-lysine yield byC. glutamicumDM1729, a rationally engineeredl-lysine-producing strain, was lower than that by its PTS-deficient derivate DM1729Δhpr, which, however, showed low production rates. The combined overexpression ofiolT1oriolT2withppgK, the gene for PolyP/ATP-dependent glucokinase, in DM1729Δhprenabledl-lysine production as fast as that by the parent strain DM1729 but with 10 to 20% higherl-lysine yield.


2011 ◽  
Vol 77 (6) ◽  
pp. 2058-2070 ◽  
Author(s):  
Matthias Raberg ◽  
Katja Peplinski ◽  
Silvia Heiss ◽  
Armin Ehrenreich ◽  
Birgit Voigt ◽  
...  

ABSTRACTBy taking advantage of the available genome sequence ofRalstonia eutrophaH16, glucose uptake in the UV-generated glucose-utilizing mutantR. eutrophaG+1 was investigated by transcriptomic and proteomic analyses. Data revealed clear evidence that glucose is transported by a usuallyN-acetylglucosamine-specific phosphotransferase system (PTS)-type transport system, which in this mutant is probably overexpressed due to a derepression of the encodingnagoperon by an identified insertion mutation in gene H16_A0310 (nagR). Furthermore, a missense mutation innagE(membrane component EIICB), which yields a substitution of an alanine by threonine in NagE and may additionally increase glucose uptake, was identified. Phosphorylation of glucose is subsequently mediated by NagF (cytosolic PTS component EIIA-HPr-EI) or glucokinase (GlK), respectively. The inability of the defined deletion mutantR. eutrophaG+1 ΔnagFECto utilize glucose strongly confirms this finding. In addition, secondary effects of glucose, which is now intracellularly available as a carbon source, on the metabolism of the mutant cells in the stationary growth phase occurred: intracellular glucose degradation is stimulated by the stronger expression of enzymes involved in the 2-keto-3-deoxygluconate 6-phosphate (KDPG) pathway and in subsequent reactions yielding pyruvate. The intermediate phosphoenolpyruvate (PEP) in turn supports further glucose uptake by the Nag PTS. Pyruvate is then decarboxylated by the pyruvate dehydrogenase multienzyme complex to acetyl coenzyme A (acetyl-CoA), which is directed to poly(3-hydroxybutyrate). The polyester is then synthesized to a greater extent, as also indicated by the upregulation of various enzymes of poly-β-hydroxybutyrate (PHB) metabolism. The larger amounts of NADPH required for PHB synthesis are delivered by significantly increased quantities of proton-translocating NAD(P) transhydrogenases. The current study successfully combined transcriptomic and proteomic investigations to unravel the phenotype of this hitherto-undefined glucose-utilizing mutant.


2000 ◽  
Vol 275 (42) ◽  
pp. 32406-32412 ◽  
Author(s):  
Maria J. Muñoz-Alonso ◽  
Ghislaine Guillemain ◽  
Nadim Kassis ◽  
Jean Girard ◽  
Anne-Françoise Burnol ◽  
...  

1973 ◽  
Vol 52 (6) ◽  
pp. 1209-1215 ◽  
Author(s):  
Charles F. Schachtele ◽  
John A. Mayo

Streptococcus mutans, S sanguis, and S salivarius use a phosphoenolpyruvate (PEP)-dependent phosphotransferase system that results in phosphorylation of glucose at carbon 6. This enzyme system is not sensitive to fluoride. Glucose uptake into resting cell suspensions is sensitive to fluoride because of inhibition of intracellular PEP production. The glucose phosphotransferase system is constitutive in oral streptococci.


1990 ◽  
Vol 259 (3) ◽  
pp. E389
Author(s):  
J T Lahtela ◽  
P A Wals ◽  
J Katz

Hepatocytes were prepared from livers of ob/ob (obese diabetic) mice and their lean (OB/OB) siblings that had been fasted for 24 h. The hepatocytes were incubated with [U-14C, 2-3H]-, [U-14C, 3-3H]-, and [U-14C, 6-3H]glucose at concentrations from 20 to 120 mM. 14C was recovered mainly in CO2, glycogen, and lactate. Tritium was recovered in water and glycogen. The yield in labeled products from [2-3H]glucose ranged from two to three times that from [U-14C]glucose. The yields from [3-3H]- and [6-3H]glucose were similar, and 1.3-1.7 times that from [U-14C]glucose. At 40 mM, total utilization of glucose by obese mice was about twice that for lean mice, but there was little difference at 120 mM. The rate of recycling between glucose and glucose 6-phosphate was calculated. An equation to calculate the rate of recycling of glucose from the 2-3H/U-14C ratio in glycogen is derived in the APPENDIX. Our results show that 1) the utilization of glucose by hepatocytes from obese diabetic mice exceeds that of their lean controls, 2) the rate of glucose phosphorylation in both groups greatly exceeds glucose uptake and the rate of glycogen synthesis, 3) glucose phosphorylation represents a difference between a high glucokinase rate and hydrolysis of glucose 6-phosphate, and 4) recycling of glucose carbon between glucose 6-phosphate and pyruvate occurs within mouse hepatocytes.


2008 ◽  
Vol 4 (1) ◽  
pp. 160 ◽  
Author(s):  
Yousuke Nishio ◽  
Yoshihiro Usuda ◽  
Kazuhiko Matsui ◽  
Hiroyuki Kurata

Sign in / Sign up

Export Citation Format

Share Document