scholarly journals Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants

2002 ◽  
Vol 68 (10) ◽  
pp. 4906-4914 ◽  
Author(s):  
Welington L. Araújo ◽  
Joelma Marcon ◽  
Walter Maccheroni ◽  
Jan Dirk van Elsas ◽  
Jim W. L. van Vuurde ◽  
...  

ABSTRACT Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC.

2014 ◽  
Vol 77 (9) ◽  
pp. 1588-1592 ◽  
Author(s):  
R. COPADO ◽  
C. ARZOLA ◽  
S. V. R. EPPS ◽  
F. RODRIGUEZ-ALMEIDA ◽  
O. RUIZ ◽  
...  

The minimal effective dose of sodium chlorate as an intervention to reduce the carriage of pathogenic bacteria in food-producing animals has not been clearly established. The effect of low-level oral chlorate administration to ewes was assessed by comparing the diversity of prominent bacterial populations in their gastrointestinal tract. Twelve lactating crossed Pelibuey and Blackbelly-Dorper ewes (average body weight, 65 kg) were randomly assigned (four per treatment) to receive a control treatment (TC; consisting of 3 g of NaCl per animal per day) or one of two chlorate treatments (T3 or T9; consisting of 1.8 or 5.4 g of NaClO3 per animal per day, respectively). Treatments were administered twice daily via oral gavage for 5 days. Ruminal and fecal samples were collected daily, starting 3 days before and ending 6 days after treatment, and were subjected to denaturing gradient gel electrophoresis of the 16S rRNA gene sequence amplified from total population DNA. For ruminal microbes, percent similarity coefficients (SCs) between groups varied from 23.0 to 67.5% and from 39.4 to 43.3% during pretreatment and treatment periods, respectively. During the treatment period, SCs within groups ranged from 39.4 to 90.3%, 43.3 to 86.7%, and 67.5 to 92.4% for TC, T3, and T9, respectively. For fecal microbes, SCs between groups varied from 38.0 to 85.2% and 38.0 to 94.2% during pretreatment and treatment periods, respectively. SCs for fecal populations during treatment were most varied for TC (38.0 to 67.9%), intermediate for T9 (75.6 to 92.0%), and least varied for T3 (80.6 to 90.6%). Heterogeneity within and between groups provided no evidence of an effect of chlorate treatment on ruminal or fecal microbial populations.


2005 ◽  
Vol 71 (3) ◽  
pp. 1202-1209 ◽  
Author(s):  
David R. Singleton ◽  
Sabrina N. Powell ◽  
Ramiah Sangaiah ◽  
Avram Gold ◽  
Louise M. Ball ◽  
...  

ABSTRACT [13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the “heavy” and “light” DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment.


2010 ◽  
Vol 77 (3) ◽  
pp. 862-870 ◽  
Author(s):  
Oriol Sacristán-Soriano ◽  
Bernard Banaigs ◽  
Emilio O. Casamayor ◽  
Mikel A. Becerro

ABSTRACTThe spongeAplysina aerophobaproduces a large diversity of brominated alkaloids (BAs) and hosts a complex microbial assemblage. Although BAs are located within sponge cells, the enzymes that bind halogen elements to organic compounds have been exclusively described in algae, fungi, and bacteria. Bacterial communities withinA. aerophobacould therefore be involved in the biosynthesis of these compounds. This study investigates whether changes in both the concentration of BAs and the bacterial assemblages are correlated inA. aerophoba. To do so, we quantified major natural products using high-performance liquid chromatography and analyzed bacterial assemblages using denaturing gradient gel electrophoresis on the 16S rRNA gene. We identified multiple associations between bacteria and natural products, including a strong relationship between aChloroflexiphylotype and aplysinamisin-1 and between an unidentified bacterium and aerophobin-2 and isofistularin-3. Our results suggest that these bacteria could either be involved in the production of BAs or be directly affected by them. To our knowledge, this is one of the first reports that find a significant correlation between natural products and bacterial populations in any benthic organism. Further investigating these associations will shed light on the organization and functioning of host-endobiont systems such asAplysina aerophoba.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 71-78 ◽  
Author(s):  
Thomas P. Curtis ◽  
Noel G. Craine

The explicit engineering of bacterial populations requires that we know which organisms perform which tasks. The comparison of the bacterial diversity of activated sludge plants may give important information about the functions of different bacteria. This difficult task may be made easier by the use of technologies based on 16S rRNA based techniques. In this study we have used denaturing gradient gel electrophoresis (DGGE) to determine the optimal sampling regime for comparative studies and used cluster analysis to show how plants may be quantitatively compared. We sought evidence of spatial, diurnal and intrasample variation in a number of sites. No evidence for variation was found in the plants studied and we concluded that a single sample of an activated sludge plant was sufficient for a plant to plant comparison. The cluster analysis was able to distinguish between plants, though further work is required to find the most appropriate basis for such comparisons. We found organisms from raw sewage in the mixed liquor samples, these organisms may have no functional significance in the treatment process and thus complicate plant to plant comparisons as will the probable presence of heteroduplex rDNA products. Nevertheless we believe that these drawbacks do not outweigh the advantages of being able to take and compare relatively large numbers of samples.


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


2006 ◽  
Vol 72 (10) ◽  
pp. 6452-6460 ◽  
Author(s):  
Paul J. Hunter ◽  
Geoff M. Petch ◽  
Leo A. Calvo-Bado ◽  
Tim R. Pettitt ◽  
Nick R. Parsons ◽  
...  

ABSTRACT The microbiological characteristics associated with disease-suppressive peats are unclear. We used a bioassay for Pythium sylvaticum-induced damping-off of cress seedlings to identify conducive and suppressive peats. Microbial activity in unconditioned peats was negatively correlated with the counts of P. sylvaticum at the end of the bioassay. Denaturing gradient gel electrophoresis (DGGE) profiling and clone library analyses of small-subunit rRNA gene sequences from two suppressive and two conducive peats differed in the bacterial profiles generated and the diversity of sequence populations. There were also significant differences between bacterial sequence populations from suppressive and conducive peats. The frequencies of a number of microbial groups, including the Rhizobium-Agrobacterium group (specifically sequences similar to those for the genera Ochrobactrum and Zoogloea) and the Acidobacteria, increased specifically in the suppressive peats, although no single bacterial group was associated with disease suppression. Fungal DGGE profiles varied little over the course of the bioassay; however, two bands associated specifically with suppressive samples were detected. Sequences from these bands corresponded to Basidiomycete yeast genera. Although the DGGE profiles were similar, fungal sequence diversity also increased during the bioassay. Sequences highly similar to those of Cryptococcus increased in relative abundance during the bioassay, particularly in the suppressive samples. This study highlights the importance of using complementary approaches to molecular profiling of complex populations and provides the first report that basidiomycetous yeasts may be associated with the suppression of Pythium-induced diseases in peats.


Author(s):  
Marcial-Quino J. ◽  
Garcia-Ocón B. ◽  
Mendoza-Espinoza J.A. ◽  
Gómez-Manzo S. ◽  
Sierra-Palacios E

Currently it is well known that yeasts play an essential role in the production of different beverages. In this paper, were identified some of the yeasts involved in the fermentation process of the pulque, a Mexican traditional beverage. Samples were collected from different regions of Mexico and yeasts were detected directly from samples without cultivation. Identifying the yeasts was obtained using amplification the D1/D2 domain of the 26S rRNA gene and Denaturing Gradient Gel Electrophoresis (DGGE). The results of DGGE showed different profiles of bands in each of the analyzed samples, indicating the presence of several species of yeast, which was also confirmed by sequencing of the bands corresponding to the domain D1/D2, succeeded in identifying five species of yeasts. The results obtained in this work demonstrated that the technique used for identification of yeasts of pulque was efficient. Besides, the optimization of this method could also allow rapid identification of yeasts and help understand the role of these in the fermentation process of this beverage, as well as the isolation of strains of interest for biotechnological purposes such as production of ethanol or metabolites with nutraceutical activity.


2001 ◽  
Vol 67 (11) ◽  
pp. 5113-5121 ◽  
Author(s):  
Luca Cocolin ◽  
Marisa Manzano ◽  
Carlo Cantoni ◽  
Giuseppe Comi

ABSTRACT In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) protocol was used to monitor the dynamic changes in the microbial population during ripening of natural fermented sausages. The method was first optimized by using control strains from international collections, and a natural sausage fermentation was studied by PCR-DGGE and traditional methods. Total microbial DNA and RNA were extracted directly from the sausages and subjected to PCR and reverse transcription-PCR, and the amplicons obtained were analyzed by DGGE. Lactic acid bacteria (LAB) were present together with other organisms, mainly members of the family Micrococcaceae and meat contaminants, such as Brochothrix thermosphacta andEnterococcus sp., during the first 3 days of fermentation. After 3 days, LAB represented the main population, which was responsible for the acidification and proteolysis that determined the characteristic organoleptic profile of the Friuli Venezia Giulia fermented sausages. The PCR-DGGE protocol for studying sausage fermentation proved to be a good tool for monitoring the process in real time, and it makes technological adjustments possible when they are required.


2001 ◽  
Vol 43 (1) ◽  
pp. 77-82 ◽  
Author(s):  
O.-C. Chan ◽  
W.-T. Liu ◽  
H. H. Fang

The microbial community structure of granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating brewery effluent was studied by denaturing gradient gel electrophoresis (DGGE). Twelve major bands were observed in the DGGE fingerprint for the Bacteria domain and four bands for the Archaea domain. Of the bacterial bands observed, six were successfully purified and sequenced. Among them, three were related to the gram-positive low G+C group, one to the Delta subclass of the Proteobacteria, one to the Gamma subclass, and one to the Cytophaga group with no close related sequence. The 16S rRNA sequences of the four archaeal bands were closely associated with Methanosaeta concilii and Methanobacterium formicum.


Sign in / Sign up

Export Citation Format

Share Document