sodium chlorate
Recently Published Documents


TOTAL DOCUMENTS

468
(FIVE YEARS 45)

H-INDEX

30
(FIVE YEARS 4)

InterConf ◽  
2021 ◽  
pp. 430-436
Author(s):  
Holida Mamadiyarova ◽  
Saodat Yusupova ◽  
Firuza Raxmanova

This article presents the interest of research and development of the fundamental technology for the production of defoliants based on sodium chlorate and aminoguanidine phosphate in a ratio of 3:2, indicates the possibility of producing a liquid and solid defoliant based on sodium chlorate and aminoguanidine phosphate in a ratio of 3:2. Tables of physicochemical characteristics of solutions and pulp of sodium chlorate and aminoguanidine phosphate are given.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Na Gao ◽  
Chunguo Ma ◽  
Kaeryaer Kariman ◽  
Jianguo Liu ◽  
Zheng Zhang ◽  
...  

In this study, to explore the influence of metals and oxides on the oxygen production rate and stability of sodium chlorate oxygen candles, 28 experimental samples were investigated. The effects of Co2O3, Co3O4, and Fe2O3 with different mass fractions on the thermal decomposition temperature and thermal decomposition rate of sodium chlorate were compared and analyzed. Co3O4 (5%) was obtained to reduce the thermal decomposition range to 260–450°C and reduce the pyrolysis interval ∆T to 46.2°C. Through the development of three metals (Fe, Mg, and Mn), under four mass fractions (2%, 4%, 6%, and 8%) mixed with Co3O4 (5%), the results of the effective oxygen production efficiency test for the thermal decomposition reaction of sodium chlorate demonstrated that Mn (6%)–Co3O4 (5%) exhibited the best catalytic and heat coupling effect; the effective oxygen production efficiency of 97.8% was achieved. Oxygen candle oxygen supply experiment was conducted; the oxygen candle composition for the test was determined to be NaClO3 (86%), Mn (6%), Co3O4 (5%), and kaolin (3%); in the four stages of the oxygen candle oxygen supply reaction test, the average oxygen supply rate reached 1.647 L/min, actual oxygen production was 28 L, and effective oxygen production rate of the oxygen candle was 53.6%. An increase of 9% was observed compared to the previous similar studies. The results of this study present a formula to optimize the oxygen supply of the oxygen candle, which is crucial for improving the oxygen supply performance of the oxygen candle.


2021 ◽  
Vol 79 ◽  
pp. 105763
Author(s):  
Conor W. Copithorne-Crainey ◽  
Fraser J. Armstrong ◽  
Madeleine Bussemaker ◽  
Judy Lee

ACS Omega ◽  
2021 ◽  
Author(s):  
Mićo M. Mitrović ◽  
Biljana Z. Maksimović ◽  
Branislava M. Vučetić ◽  
Milica M. Milojević ◽  
Andrijana A. Žekić

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Irfan Purnawan ◽  
Sutrasno Kartohardjono ◽  
Levana Wibowo ◽  
Annisa Faiza Ramadhani ◽  
Woei Jye Lau ◽  
...  

NOx (NO and NO2) are air toxins that endanger life and represent a hazard to the environment, such as photochemical smog, global warming, acid rain, ozone depletion, and the occurrence of respiratory infections. Some technological strategies to diminish NOx emissions to meet regulations depend on two techniques: the dry process and the wet process. This study applies polyvinylidene fluoride (PVDF) hollow fiber membrane modules as a medium to remove NOx from solutions containing several absorbents such as hydrogen peroxide and nitric acid (H2O2-HNO3) solutions, sodium chlorite and sodium hydroxide (NaClO2-NaOH) solutions, and sodium chlorate and sodium hydroxide (NaClO3-NaOH) solutions. The experimental results showed that the oxidant’s strength influences NOx removal efficiency, where the absorbent solutions containing hydrogen peroxide had the highest removal efficiency as hydrogen peroxide is the most potent oxidant, followed by sodium chlorite and sodium chlorate. The three pairs of absorbents also gave a high NOx removal efficiency (above 90%), which means that all the absorbents used in the study are very potential to be used to diminish NOx via the wet process. NOx removal efficiency at the same feed gas flow rate increased as the number of fiber and absorbent concentrations is increased. However, NOx removal efficiency is reduced as the feed gas flow rate is increased at the same membrane module and absorbent concentration.


2021 ◽  
pp. 1-36
Author(s):  
Justin McCoy ◽  
Bobby Golden ◽  
Jason Bond ◽  
Darrin Dodds ◽  
Taghi Bararpour ◽  
...  

In Mississippi, rice reproduction and ripening often overlaps with soybean maturation creating potential for herbicide exposure from desiccants applied to soybeans onto rice. Six independent studies were conducted concurrently at the Delta Research and Extension Center in Stoneville, MS from 2016 to 2018 to determine the response of rice to sub-lethal concentrations of soybean desiccants during rice reproductive and ripening growth stages. Studies included the desiccants paraquat, glyphosate, saflufenacil, sodium chlorate, paraquat+saflufenacil, and paraquat+sodium chlorate applied at a rate equal to 1/10 of Mississippi recommendations. Treatments were applied at five different rice growth stages beginning at 50% heading (defined as 0 d after heading (DAH)), with subsequent applications at one week intervals (0, 7, 14, 21, and 28 DAH) up to harvest. Injury was observed 7 days after application (DAA) with five of six desiccants at all application timings. No injury was observed with glyphosate application across all rating intervals. Rough rice grain yield following all glyphosate applications was reduced by >6%. In the studies evaluating paraquat injury ranged from 5 to 18% at all evaluations, regardless of application timing. Rough rice grain yield was reduced >12% 0 to 21 DAH, following paraquat application. Similar trends were observed with paraquat+saflufenacil and paraquat+sodium chlorate, with rice exhibiting yield decreases >6% following an application 0 to 14 and 0 to 21 DAH, respectively. In studies evaluating saflufenacil and sodium chlorate rough rice grain yield was >95% of the untreated across all application timings Yield component trends closely resembled reductions observed in rough rice grain yield. Reductions in head rice yield were >5% following applications of paraquat or paraquat+saflufenacil 0 to 14 and 0 to 21 DAH respectively. Late-season exposure to sub-lethal concentrations of desiccant from 50% heading (0 DAH) to 28 DAH has an impact on rough rice grain yield, yield components, and head rice yield.


2021 ◽  
Author(s):  
Jaesoo Jung ◽  
Jhon R Enterina ◽  
Duong T Bui ◽  
Fahima Mozaneh ◽  
Po-Han Lin ◽  
...  

The immunomodulatory family of Siglecs recognize sialic acid-containing glycans as self, which is exploited in cancer for immune-evasion. The biochemical nature of Siglec ligands remains incompletely understood with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs (CHST1, CHST2, or CHST4) significantly enhances the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, pharmacological blockade of N- and O-glycan maturation reveals a cell type-specific pattern of importance for either class of glycan. Production of a highly homogenous CD33 (Siglec-3) fragment enabled a mass spectrometry-based binding assay to determine 10-fold and 3-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc and Neu5Acα2-3Galβ1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galβ1-4GlcNAc. CD33 showed significant additivity in affinity (36-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galβ1-4(6-O-sulfo)GlcNAc. Moreover, overexpression of both CHST1 and CHST2 in cells greatly enhanced the binding of several Siglecs, including CD33. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a modification that is a general mechanism for tuning Siglec ligands on cells, including in cancer.


Author(s):  
Elena Schaberg ◽  
Ursula Theocharidis ◽  
Marcus May ◽  
Katrin Lessmann ◽  
Timm Schroeder ◽  
...  

In the developing spinal cord neural stem and progenitor cells (NSPCs) secrete and are surrounded by extracellular matrix (ECM) molecules that influence their lineage decisions. The chondroitin sulfate proteoglycan (CSPG) DSD-1-PG is an isoform of receptor protein tyrosine phosphatase-beta/zeta (RPTPβ/ζ), a trans-membrane receptor expressed by NSPCs. The chondroitin sulfate glycosaminoglycan chains are sulfated at distinct positions by sulfotransferases, thereby generating the distinct DSD-1-epitope that is recognized by the monoclonal antibody (mAb) 473HD. We detected the epitope, the critical enzymes and RPTPβ/ζ in the developing spinal cord. To obtain insight into potential biological functions, we exposed spinal cord NSPCs to sodium chlorate. The reagent suppresses the sulfation of glycosaminoglycans, thereby erasing any sulfation code expressed by the glycosaminoglycan polymers. When NSPCs were treated with chlorate and cultivated in the presence of FGF2, their proliferation rate was clearly reduced, while NSPCs exposed to EGF were less affected. Time-lapse video microscopy and subsequent single-cell tracking revealed that pedigrees of NSPCs cultivated with FGF2 were strongly disrupted when sulfation was suppressed. Furthermore, the NSPCs displayed a protracted cell cycle length. We conclude that the inhibition of sulfation with sodium chlorate interferes with the FGF2-dependent cell cycle progression in spinal cord NSPCs.


Sign in / Sign up

Export Citation Format

Share Document