scholarly journals Rhodanobacter sp. Strain BPC1 in a Benzo[a]pyrene-Mineralizing Bacterial Consortium

2002 ◽  
Vol 68 (12) ◽  
pp. 5826-5833 ◽  
Author(s):  
Robert A. Kanaly ◽  
Shigeaki Harayama ◽  
Kazuya Watanabe

ABSTRACT A bacterial consortium which rapidly mineralizes benzo[a]pyrene when it is grown on a high-boiling-point diesel fuel distillate (HBD) was recovered from soil and maintained for approximately 3 years. Previous studies have shown that mobilization of benzo[a]pyrene into the supernatant liquid precedes mineralization of this compound (R. Kanaly, R. Bartha, K. Watanabe, and S. Harayama, Appl. Environ. Microbiol. 66:4205-4211, 2000). In the present study, we found that sterilized supernatant liquid filtrate (SSLF) obtained from the growing consortium stimulated mineralization of benzo[a]pyrene when it was readministered to a consortium inoculum without HBD. Following this observation, eight bacterial strains were isolated from the consortium, and SSLF of each of them was assayed for the ability to stimulate benzo[a]pyrene mineralization by the original consortium. The SSLF obtained from one strain, designated BPC1, most vigorously stimulated benzo[a]pyrene mineralization by the original consortium; its effect was more than twofold greater than the effect of the SSLF obtained from the original consortium. A 16S rRNA gene sequence analysis and biochemical tests identified strain BPC1 as a member of the genus Rhodanobacter, whose type strain, Rhodanobacter lindaniclasticus RP5557, which was isolated for its ability to grow on the pesticide lindane, is not extant. Strain BPC1 could not grow on lindane, benzo[a]pyrene, simple hydrocarbons, and HBD in pure culture. In contrast, a competitive PCR assay indicated that strain BPC1 grew in the consortium fed only HBD and benzo[a]pyrene. This growth of BPC1 was concomitant with growth of the total bacterial consortium and preceded the initiation of benzo[a]pyrene mineralization. These results suggest that strain BPC1 has a specialized niche in the benzo[a]pyrene-mineralizing consortium; namely, it grows on metabolites produced by fellow members and contributes to benzo[a]pyrene mineralization by increasing the bioavailability of this compound.

2006 ◽  
Vol 56 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Yukiyo Fukunaga ◽  
Midori Kurahashi ◽  
Kenji Tanaka ◽  
Kensuke Yanagi ◽  
Akira Yokota ◽  
...  

Two bacterial strains, F423T and F10102, were isolated from two ascidians, Polycitor proliferus and Botryllidae sp., respectively, which were collected from a beach on the Boso peninsula in Japan. Cells of both isolates were motile, rod-shaped and formed star-shaped aggregates in the early stage of exponential growth, but were coccoid in stationary growth phase. The results of 16S rRNA gene sequence analysis, fatty acid analysis, DNA–DNA hybridization experiments and physiological and biochemical tests indicated that the two strains were members of a novel species of the genus Pseudovibrio for which the name Pseudovibrio ascidiaceicola sp. nov. is proposed. The type strain is F423T (=NBRC 100514T=IAM 15084T=DSM 16392T=KCTC 12308T).


2011 ◽  
Vol 61 (4) ◽  
pp. 979-984 ◽  
Author(s):  
Lars Ganzert ◽  
Felizitas Bajerski ◽  
Kai Mangelsdorf ◽  
André Lipski ◽  
Dirk Wagner

Two novel cold-tolerant, Gram-stain-positive, motile, facultatively anaerobic bacterial strains, LI2T and LI3T, were isolated from moss-covered soil from Livingston Island, Antarctica, near the Bulgarian station St Kliment Ohridski. A rod–coccus cycle was observed for both strains. 16S rRNA gene sequence analysis revealed an affiliation to the genus Arthrobacter, with the highest similarity to Arthrobacter stackebrandtii and Arthrobacter psychrochitiniphilus for strain LI2T (97.8 and 97.7 % similarity to the respective type strains) and to Arthrobacter kerguelensis and Arthrobacter psychrophenolicus for strain LI3T (97.4 and 97.3 % similarity to the respective type strains). The growth temperature range was −6 to 28 °C for LI2T and −6 to 24 °C for LI3T, with an optimum at 16 °C for both strains. Growth occurred at 0–10 % (w/v) NaCl, with optimum growth at 0–1 % (w/v) for LI2T and 0.5–3 % (w/v) for LI3T. The pH range for growth was pH 4–9.5 with an optimum of pH 8 for LI2T and pH 6.5 for LI3T. The predominant fatty acids were anteiso-C15 : 0, C18 : 0 and anteiso-C17 : 0 for LI2T and anteiso-C15 : 0 and C18 : 0 for LI3T. Physiological and biochemical tests clearly differentiated strain LI2T from A. stackebrandtii and A. psychrochitiniphilus and strain LI3T from A. kerguelensis and A. psychrophenolicus. Therefore, two novel species within the genus Arthrobacter are proposed: Arthrobacter livingstonensis sp. nov. (type strain LI2T  = DSM 22825T  = NCCB 100314T) and Arthrobacter cryotolerans sp. nov. (type strain LI3T  = DSM 22826T  = NCCB 100315T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1055-1061 ◽  
Author(s):  
Carole Feurer ◽  
Dominique Clermont ◽  
François Bimet ◽  
Adina Candréa ◽  
Mary Jackson ◽  
...  

Nine unidentified Gram-positive, lipophilic corynebacteria were isolated from clinical and food samples and subjected to a polyphasic taxonomic analysis. The bacteria were distinguished from Corynebacterium species with validly published names by biochemical tests, fatty acid content and whole-cell protein analysis. Comparative 16S rRNA gene sequence analysis demonstrated unambiguously that the nine strains were related phylogenetically to the species ‘Corynebacterium tuberculostearicum’ and represented a distinct subline within the genus Corynebacterium. On the basis of both phenotypic and phylogenetic evidence, the formal description of Corynebacterium tuberculostearicum sp. nov. is proposed. The type strain of C. tuberculostearicum is Medalle XT (=LDC-20T=CIP 107291T=CCUG 45418T=ATCC 35529T).


2007 ◽  
Vol 57 (3) ◽  
pp. 548-551 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Min-Kyeong Kim ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial strains, designated GH34-4T and GH41-7T, were isolated from greenhouse soil cultivated with cucumber. The bacteria were strictly aerobic, Gram-negative, rod-shaped and oxidase- and catalase-positive. 16S rRNA gene sequence analysis indicated that these strains belong to the genus Lysobacter within the Gammaproteobacteria. Strain GH34-4T showed highest sequence similarity to Lysobacter yangpyeongensis GH19-3T (97.5 %) and Lysobacter koreensis Dae16T (96.4 %), and strain GH41-7T showed highest sequence similarity to Lysobacter antibioticus DSM 2044T (97.5 %), Lysobacter enzymogenes DSM 2043T (97.5 %) and Lysobacter gummosus ATCC 29489T (97.4 %). Levels of DNA–DNA relatedness indicated that strains GH34-4T and GH41-7T represented species clearly different from L. yangpyeongensis, L. antibioticus, L. enzymogenes and L. gummosus. The major cellular fatty acids of strains GH34-4T and GH41-7T were iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c, and the major isoprenoid quinone was Q-8. The DNA G+C contents of GH34-4T and GH41-7T were 62.5 and 66.6 mol%, respectively. On the basis of the polyphasic taxonomic data presented, it is evident that each of these strains represents a novel species of the genus Lysobacter, for which the names Lysobacter niabensis sp. nov. (type strain GH34-4T=KACC 11587T=DSM 18244T) and Lysobacter niastensis sp. nov. (type strain GH41-7T=KACC 11588T=DSM 18481T) are proposed.


2007 ◽  
Vol 57 (9) ◽  
pp. 2056-2061 ◽  
Author(s):  
Kim Heylen ◽  
Bram Vanparys ◽  
Filip Peirsegaele ◽  
Liesbeth Lebbe ◽  
Paul De Vos

Three Gram-negative, rod-shaped, non-spore-forming, nitrate-reducing isolates (R-32746, R-32768T and R-32729T) were obtained from soil. Analysis of repetitive sequence-based PCR showed that the three isolates represented two different strains. 16S rRNA gene sequence analysis and DNA–DNA hybridization placed them within the genus Stenotrophomonas and revealed that they were genotypically different from each other and from all recognized Stenotrophomonas species. Analysis of the fatty acid composition and physiological and biochemical tests allowed differentiation from their closest phylogenetic neighbours. They are therefore considered to represent two novel species, for which the names Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov. are proposed, with strains R-32768T (=LMG 23958T=DSM 18941T) and R-32729T (=LMG 23959T=DSM 18929T), respectively, as the type strains.


2011 ◽  
Vol 61 (7) ◽  
pp. 1612-1616 ◽  
Author(s):  
Lingyun Qu ◽  
Qiliang Lai ◽  
Fengling Zhu ◽  
Xuguang Hong ◽  
Jinxing Zhang ◽  
...  

Two novel Gram-negative, oxidase- and catalase-positive, rod-shaped bacterial strains, designated YCSA28T and YCSA39, were isolated from sediment of Daqiao saltern, Jimo, Qingdao, on the east coast of China. The two strains grew optimally at 28–30 °C, at pH 7.5 and in the presence of 7–8 % (w/v) NaCl. They were assigned to the genus Halomonas, class Gammaproteobacteria, based on 16S rRNA gene sequence analysis. The major cellular fatty acids of the two strains were C18 : 1ω7c (42.9 %), C16 : 0 (23.1 %) and C16 : 1ω7c/ω6c (18.0 %), and Q-9 was the major ubiquinone. The G+C content of the DNA of strains YCSA28T and YCSA39 was 63.7 and 63.9 mol%, respectively. The predominant respiratory lipoquinone, cellular fatty acid profiles and DNA G+C content of strains YCSA28T and YCSA39 were consistent with those of recognized species of the genus Halomonas. Levels of DNA–DNA relatedness between strains YCSA28T and YCSA39, between YCSA28T and Halomonas ventosae Al12T, and between YCSA39 and H. ventosae Al12T were 95, 45 and 50 %, respectively. Together, these data indicated that strains YCSA28T and YCSA39 represent a single novel species of the genus Halomonas, for which the name Halomonas daqiaonensis sp. nov. is proposed. The type strain is YCSA28T ( = CGMCC 1.9150T  = NCCB 100305T  = MCCC 1B00920T).


2010 ◽  
Vol 60 (4) ◽  
pp. 824-827 ◽  
Author(s):  
P. Kämpfer ◽  
Chiu-Chung Young ◽  
H.-J. Busse ◽  
Jiunn-Nan Chu ◽  
P. Schumann ◽  
...  

A Gram-stain-positive, coccoid, non-endospore-forming actinobacterium (strain CC-12602T) was isolated from a spawn used for growing the edible mushroom Agaricus brasiliensis in the laboratory. On the basis of 16S rRNA gene sequence analysis, strain CC-12602T was shown to belong to the genus Microlunatus and was related most closely to the type strains of Microlunatus ginsengisoli (96.1 % similarity), M. phosphovorus (95.9 %), M. panaciterrae (95.8 %) and M. aurantiacus (95.5 %). The quinone system comprised menaquinone MK-9(H4) as the major component and the polyamine pattern consisted of spermidine and spermine as major compounds. The predominant polar lipids were phosphatidylglycerol and unknown phospholipid PL3. Moderate amounts of diphosphatidylglycerol, an unknown glycolipid and three unknown phospholipids and minor amounts of an unknown phospholipid and a polar lipid were detected. The peptidoglycan type was A3γ′, based on ll-2,6-diaminopimelic acid with an interpeptide bridge consisting of a single glycine residue and a second glycine residue at position 1 of the peptide subunit. Peptidoglycan structure and major fatty acids (anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0) supported the affiliation of strain CC-12602T to the genus Microlunatus. The results of physiological and biochemical tests allowed strain CC-12602T to be differentiated phenotypically from recognized Microlunatus species. Strain CC-12602T is therefore considered to represent a novel species of the genus Microlunatus, for which the name Microlunatus soli sp. nov. is proposed. The type strain is CC-12602T (=DSM 21800T =CCM 7685T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1675-1680 ◽  
Author(s):  
Marcel Nordhoff ◽  
David Taras ◽  
Moritz Macha ◽  
Karsten Tedin ◽  
Hans-Jürgen Busse ◽  
...  

Limit-dilution procedures were used to isolate seven, helically coiled bacterial strains from faeces of swine that constituted two unidentified taxa. Comparative 16S rRNA gene sequence analysis showed highest similarity values with species of the genus Treponema indicating that the isolates are members of this genus. Strain 7CPL208T, as well as five further isolates, and 14V28T displayed the highest 16S rRNA gene sequence similarities with Treponema pectinovorum ATCC 33768T (92·3 %) and Treponema parvum OMZ 833T (89·9 %), respectively. Polar lipid profiles distinguished 7CPL208T and 14V28T from each other as well as from related species. Based on their phenotypic and genotypic distinctiveness, strains 7CPL208T and 14V28T are suggested to represent two novel species of the genus Treponema, for which the names Treponema berlinense sp. nov. and Treponema porcinum sp. nov. are proposed. The type strain for Treponema berlinense is 7CPL208T (=ATCC BAA-909T=CIP 108244T=JCM 12341T) and for Treponema porcinum 14V28T (=ATCC BAA-908T=CIP 108245T=JCM 12342T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2113-2117 ◽  
Author(s):  
Akiko Kageyama ◽  
Yoko Takahashi ◽  
Satoshi Ōmura

Three novel bacterial strains were isolated from a soil sample collected in Japan by culture on a GPM agar plate supplemented with superoxide dismutase and catalase. The strains were Gram-positive, catalase-positive, non-motile bacteria with l-ornithine as a diagnostic diamino acid of the peptidoglycan. The acyl type of the peptidoglycan was N-glycolyl. The major menaquinones were MK-12, 13 and 14. Mycolic acids were not detected. G+C contents of the DNA were in the range 69–71 mol%. Comparative 16S rRNA gene sequence analysis revealed that the isolates belonged to the genus Microbacterium and were closely related to Microbacterium terregens, Microbacterium aurum, Microbacterium koreense, Microbacterium schleiferi and Microbacterium lacticum. However, M. aurum, M. koreense and M. lacticum clearly differed from the isolated strains based on the presence of l-lysine as the cell-wall diamino acid and various other chemotaxonomic characteristics. Levels of DNA–DNA relatedness showed that the isolated strains represented three separate genomic species. Based on both phenotypic and genotypic data, the following novel species of the genus Microbacterium are proposed: Microbacterium deminutum sp. nov. (type strain KV-483T=NRRL B-24453T=NBRC 101278T), Microbacterium pumilum sp. nov. (type strain KV-488T=NRRL B-24452T=NBRC 101279T) and Microbacterium aoyamense sp. nov. (type strain KV-492T=NRRL B-24451T=NBRC 101280T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1213-1216 ◽  
Author(s):  
Huapeng Fan ◽  
Yanfen Xue ◽  
Yanhe Ma ◽  
Antonio Ventosa ◽  
William D. Grant

A novel haloalkaliphilic archaeon, strain 8W8T, was isolated from Lake Zabuye, on the Tibetan Plateau, China. On the basis of 16S rRNA gene sequence analysis, strain 8W8T was shown to belong to the genus Halorubrum and was related to Halorubrum vacuolatum (96·7 % sequence similarity), Halorubrum saccharovorum (96·0 %), Halorubrum lacusprofundi (95·4 %) and Halorubrum sodomense (95·3 %). The phylogenetic distance from any species within the other genera of Halobacteriales was lower than 90 %. The major polar lipids of strain 8W8T were C20C20 and C20C25 derivatives of phosphatidylglycerol phosphate and phosphatidylglycerol phosphate methyl ester. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 8W8T from the eight Halorubrum species with validly published names. Therefore, strain 8W8T represents a novel species, for which the name Halorubrum tibetense sp. nov. is proposed, with the type strain 8W8T (=AS 1.3239T=JCM 11889T).


Sign in / Sign up

Export Citation Format

Share Document