scholarly journals Effects of Different Spices Used in Production of Fermented Sausages on Growth of and Curvacin A Production by Lactobacillus curvatus LTH 1174

2004 ◽  
Vol 70 (8) ◽  
pp. 4807-4813 ◽  
Author(s):  
Jurgen Verluyten ◽  
Frédéric Leroy ◽  
Luc de Vuyst

ABSTRACT Lactobacillus curvatus LTH 1174, a fermented sausage isolate, produces the listericidal bacteriocin curvacin A. The effect of different spices relevant for the production of fermented sausages was investigated in vitro through laboratory fermentations with a meat simulation medium and an imposed pH profile relevant for Belgian-type fermented sausages. The influence on the growth characteristics and especially on the kinetics of curvacin A production with L. curvatus LTH 1174 was evaluated. Pepper, nutmeg, rosemary, mace, and garlic all decreased the maximum specific growth rate, while paprika was the only spice that increased it. The effect on the lag phase was minor except for nutmeg and especially for garlic, which increased it, yet garlic was stimulatory for biomass production. The maximum attainable biomass concentration (X max) was severely decreased by the addition of 0.40% (wt/vol) nutmeg, while 0.35% (wt/vol) garlic or 0.80% (wt/vol) white pepper increased X max. Nutmeg decreased both growth and bacteriocin production considerably. Garlic was the only spice enhancing specific bacteriocin production, resulting in higher bacteriocin activity in the cell-free culture supernatant. Finally, lactic acid production was stimulated by the addition of pepper, and this was not due to the manganese present because an amount of manganese that was not growth limiting was added to the growth medium. Addition of spices to the sausage mixture is clearly a factor that will influence the effectiveness of bacteriocinogenic starter cultures in fermented-sausage manufacturing.

2003 ◽  
Vol 69 (7) ◽  
pp. 3833-3839 ◽  
Author(s):  
Jurgen Verluyten ◽  
Winy Messens ◽  
Luc De Vuyst

ABSTRACT Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions.


2004 ◽  
Vol 70 (9) ◽  
pp. 5081-5088 ◽  
Author(s):  
Jurgen Verluyten ◽  
Frédéric Leroy ◽  
Luc de Vuyst

ABSTRACT Lactobacillus curvatus LTH 1174, a fermented sausage isolate, produces the antilisterial bacteriocin curvacin A. Its biokinetics of cell growth and bacteriocin production as a function of various concentrations of a complex nutrient source were investigated in vitro during laboratory fermentations with modified MRS medium. A modification of the nutrient depletion model (Leroy and De Vuyst, Appl. Environ, Microbiol. 67:4470-4473, 2001) was used to fit the data describing growth and bacteriocin production. Both cell growth and bacteriocin activity were influenced by changes in the complex nutrient source concentration. Standard MRS medium clearly limited the growth of L. curvatus LTH 1174. Higher nutrient concentrations, up to a certain degree, led to improved growth, a higher attainable biomass concentration, and a higher bacteriocin activity in the supernatant. A lower concentration of complex nutrient source caused severe growth inhibition, leading to a lower biomass concentration but a much higher specific bacteriocin production. When examining the separate components of the complex nutrient source, a stimulating effect of bacteriological peptone on growth was found without an adverse effect on bacteriocin production, resulting in increased curvacin A activity. Furthermore, specific depletion of the amino acids tyrosine, serine, and asparagine/aspartic acid was observed for this strain.


2004 ◽  
Vol 70 (4) ◽  
pp. 2271-2278 ◽  
Author(s):  
Jurgen Verluyten ◽  
Winy Messens ◽  
Luc De Vuyst

ABSTRACT Lactobacillus curvatus LTH 1174, a strain originating in fermented sausage, produces the antilisterial bacteriocin curvacin A. Its biokinetics of cell growth and bacteriocin production as a function of various concentrations of salt (sodium chloride) were investigated in vitro during laboratory fermentations using modified MRS medium. A model was set up to describe the effects of different NaCl concentrations on microbial behavior. Both cell growth and bacteriocin activity were affected by changes in the salt concentration. Sodium chloride clearly slowed down the growth of L. curvatus LTH 1174, but more importantly, it had a detrimental effect on specific curvacin A production (kB ) and hence on overall bacteriocin activity. Even a low salt concentration (2%, wt/vol) decreased bacteriocin production, while growth was unaffected at this concentration. The inhibitory effect of NaCl was mainly due to its role as an aw-lowering agent. Further, it was clear that salt interfered with bacteriocin induction. Additionally, when 6% (wt/vol) sodium chloride was added, the minimum biomass concentration necessary to start the production of curvacin A (XB ) was 0.90 g (cell dry mass) per liter. Addition of the cell-free culture supernatant or a protein solution as a source of induction factor resulted in a decrease in XB , an increase in kB , and hence an increase in the maximum attainable bacteriocin activity.


2007 ◽  
Vol 73 (17) ◽  
pp. 5453-5463 ◽  
Author(s):  
Francesco Villani ◽  
Annalisa Casaburi ◽  
Carmela Pennacchia ◽  
Luisa Filosa ◽  
Federica Russo ◽  
...  

ABSTRACT The microbial ecology of “soppressata of Vallo di Diano,” a traditional dry fermented sausage from southern Italy, was studied by using both culture-dependent and culture-independent approaches. The ripened fermented sausages were characterized by high microbial loads of both staphylococci and lactobacilli. Using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the variable V3 and V1 regions of the 16S rRNA gene and direct DNA sequencing, it was possible to identify Staphylococcus xylosus, S. succinus, and S. equorum among the staphylococci and Lactobacillus sakei and L. curvatus within the lactobacilli. Moreover, Debaryomyces hansenii was the main yeast species found by targeting the yeast 26S rRNA gene by PCR-DGGE. Selected strains of S. xylosus, L. sakei, and L. curvatus were characterized for their technological properties in the ripening conditions of the fermented sausages so as to select an autochthonous starter formulation. The selection included the determination of nitrate reductase, lipolytic, and antioxidant activity and proteolysis with myofibrillar and sarcoplasmic protein fractions. Such properties were evaluated in both in vitro and in situ assays; the latter were performed by using each strain as a starter in the laboratory-scale manufacture of soppressata of Vallo di Diano and by monitoring the microbiological and chemical changes at the end of ripening. The results show differences between the in vitro and in situ selection results and indicate that in situ evaluation of the technological performance of specific strains is better suited to selecting autochthonous starter cultures for fermented-meat products than in vitro evaluation.


1999 ◽  
Vol 65 (12) ◽  
pp. 5350-5356 ◽  
Author(s):  
Frédéric Leroy ◽  
Luc de Vuyst

ABSTRACT The specific conditions in the batter of raw fermented sausages may reduce the efficiency of bacteriocin-producing starter cultures. In this work, using in vitro fermentation, we found that sodium chloride and sodium nitrite interfere with the growth ofLactobacillus sakei CTC 494, an organism which produces the antilisterial bacteriocin sakacin K. Because sakacin K production follows primary metabolite kinetics, a decrease in cell formation resulted in a decrease in sakacin K production as well. Sodium chloride dramatically influenced bacteriocin production by decreasing both biomass production and specific bacteriocin production. Sodium nitrite, however, had no effect on specific bacteriocin production and decreased bacteriocin production only because of its effect on cell growth. Moreover, sodium nitrite enhanced the toxic effect of lactic acid on bacterial growth.


2020 ◽  
Vol 8 (5) ◽  
pp. 686
Author(s):  
Igor Dias ◽  
Marta Laranjo ◽  
Maria Eduarda Potes ◽  
Ana Cristina Agulheiro-Santos ◽  
Sara Ricardo-Rodrigues ◽  
...  

Traditional smoked fermented sausages are highly appreciated in Portugal and are mostly manufactured according to traditional procedures. The aim of the present work was to evaluate the effect of autochthonous starter cultures on the safety and quality of a smoked fermented sausage, Painho da Beira Baixa (PBB), preserving its sensory quality. Physicochemical parameters, namely pH and water activity (aW), microbiological parameters, biogenic amines, colour, texture profile and sensory attributes were assessed. Different starters were selected based on our previous work. Staphylococcus equorum S2M7, Staphylococcus xylosus CECT7057, Lactobacillus sakei CV3C2, Lactobacillus sakei CECT7056 and a yeast strain (2RB4) were co-inoculated in meat batters at defined concentrations. Starters had a significant effect on the reduction of pH. Enterobacteria and Listeria monocytogenes were not detected in inoculated end-product sausages. Moreover, sausages inoculated with S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 showed a significant reduction in the total content of biogenic amines. No significant differences between treatments were observed for colour and texture parameters, except for adhesiveness. The studied starters did not compromise the sensory characteristics of PBB. To our knowledge, this is the first comprehensive study on the quality and safety of this type of smoked fermented sausage from the central region of Portugal.


2008 ◽  
Vol 71 (9) ◽  
pp. 1817-1827 ◽  
Author(s):  
FRÉDÉRIC RAVYTS ◽  
SILVANA BARBUTI ◽  
MARIA ANGELA FRUSTOLI ◽  
GIOVANNI PAROLARI ◽  
GIOVANNA SACCANI ◽  
...  

Application of bacteriocin-producing starter cultures of lactic acid bacteria in fermented sausage production contributes to food safety. This is sometimes hampered by limited efficacy in situ and by uncertainty about strain dependency and universal applicability for different sausage types. In the present study, a promising antilisterial-bacteriocin producer, Lactobacillus sakei CTC 494, was applied as a coculture in addition to commercial fermentative starters in different types of dry-fermented sausages. The strain was successful in both Belgian-type sausage and Italian salami that were artificially contaminated with about 3.5 log CFU g−1 of Listeria monocytogenes. After completion of the production process, this led to listerial reductions of up to 1.4 and 0.6 log CFU g−1, respectively. In a control sausage, containing only the commercial fermentative starter, the reduction was limited to 0.8 log CFU g−1 for the Belgian-type recipe, where pH decreased from 5.9 to 4.9, whereas an increase of 0.2 log CFU g−1 was observed for Italian salami, in which the pH rose from 5.7 to 5.9 after an initial decrease to pH 5.3. In a Cacciatore recipe inoculated with 5.5 log CFU g−1 of L. monocytogenes and in the presence of L. sakei CTC 494, there was a listerial reduction of 1.8 log CFU g−1 at the end of the production process. This was superior to the effect obtained with the control sausage (0.8 log CFU g−1). Two commercial antilisterial cultures yielded reductions of 1.2 and 1.5 log CFU g−1. Moreover, repetitive DNA sequence–based PCR fingerprinting demonstrated the competitive superiority of L. sakei CTC 494.


1999 ◽  
Vol 65 (3) ◽  
pp. 974-981 ◽  
Author(s):  
Frédéric Leroy ◽  
Luc de Vuyst

ABSTRACT Sakacin K is an antilisterial bacteriocin produced byLactobacillus sake CTC 494, a strain isolated from Spanish dry fermented sausages. The biokinetics of cell growth and bacteriocin production of L. sake CTC 494 in vitro during laboratory fermentations were investigated by making use of MRS broth. The data obtained from the fermentations was used to set up a predictive model to describe the influence of the physical factors temperature and pH on microbial behavior. The model was validated successfully for all components. However, the specific bacteriocin production rate seemed to have an upper limit. Both cell growth and bacteriocin activity were very much influenced by changes in temperature and pH. The production of biomass was closely related to bacteriocin activity, indicating primary metabolite kinetics, but was not the only factor of importance. Acidity dramatically influenced both the production and the inactivation of sakacin K; the optimal pH for cell growth did not correspond to the pH for maximal sakacin K activity. Furthermore, cells grew well at 35°C but no bacteriocin production could be detected at this temperature. L. sake CTC 494 shows special promise for implementation as a novel bacteriocin-producing sausage starter culture with antilisterial properties, considering the fact that the temperature and acidity conditions that prevail during the fermentation process of dry fermented sausages are optimal for the production of sakacin K.


Author(s):  
Radka Burdychová

Here, seven different starter cultures used in the production of fermented sausages were screened for the presence or absence of specific DNA sequences coding for tyrosine decarboxylase. PCR with the a set of specific primers TDC2/TDC5 (COTON et al., 2004) was used. The PCR analysis of DNA from two starter cultures confirmed the presence of DNA sequences for tyrosine decarboxylase. A detailed analysis of the starter cultures showed that DNA sequences for tyrosine decarboxylase are contained in genomic DNA of Lactobacillus curvatus and Lactobacillus sakei. These results show suitability of the described PCR method for the screening of starter cultures for the presence of the gene for tyrosine decarboxylase that is responsible for the production of the biogenic amine tyramine.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 596 ◽  
Author(s):  
Nadia de L. Agüero ◽  
Laureano S. Frizzo ◽  
Arthur C. Ouwehand ◽  
Gonzalo Aleu ◽  
Marcelo R. Rosmini

The objective of this study was to investigate probiotic microorganisms for use as starter cultures in dry fermented sausages production. A total of eight strains were studied evaluating technological and safety characteristics including the ability to grow, lactic acid production, gas formation, catalase activity, nitrate reductase activity, proteolytic activity, lipolytic activity, hydrogen peroxide production, salt tolerance, performance at low temperatures, decarboxylation of amino acids and antimicrobial activity against pathogens associated with the product. Lactobacillus rhamnosus R0011, L. rhamnosus Lr-32, Lactobacillus paracasei Lpc-37, Lactobacillus casei Shirota and Enterococcus faecium MXVK29 were good candidates for use as fermented sausages starters cultures because they showed the best technological and safety properties since they did not demonstrate amino acid decarboxylation but showed antimicrobial activity against Listeria monocytogenes, Escherichia coli, Salmonella Dublin and Staphylococcus aureus. L. rhamnosus Lr-32 was the strain best tolerating the levels of salt, nitrate and low pH during the simulated stages of fermentation and ripening of sausage. The strain was thus the most promising of the tested probiotics as sausage starter culture. The findings warrant studies in a meat matrix, such as that of raw-cured sausage, to evaluate the effects of L. rhamnosus Lr-32 under actual conditions.


Sign in / Sign up

Export Citation Format

Share Document