scholarly journals Naturally Transformable Acinetobacter sp. Strain ADP1 Belongs to the Newly Described Species Acinetobacter baylyi

2006 ◽  
Vol 72 (1) ◽  
pp. 932-936 ◽  
Author(s):  
Mario Vaneechoutte ◽  
David M. Young ◽  
L. Nicholas Ornston ◽  
Thierry De Baere ◽  
Alexandr Nemec ◽  
...  

ABSTRACT Genotypic and phenotypic analyses were carried out to clarify the taxonomic position of the naturally transformable Acinetobacter sp. strain ADP1. Transfer tDNA-PCR fingerprinting, 16S rRNA gene sequence analysis, and selective restriction fragment amplification (amplified fragment length polymorphism analysis) indicate that strain ADP1 and a second transformable strain, designated 93A2, are members of the newly described species Acinetobacter baylyi. Transformation assays demonstrate that the A. baylyi type strain B2T and two other originally identified members of the species (C5 and A7) also have the ability to undergo natural transformation at high frequencies, confirming that these five strains belong to a separate species of the genus Acinetobacter, characterized by the high transformability of its strains that have been cultured thus far.

2005 ◽  
Vol 55 (2) ◽  
pp. 763-767 ◽  
Author(s):  
Rosica Valcheva ◽  
Maher Korakli ◽  
Bernard Onno ◽  
Hervé Prévost ◽  
Iskra Ivanova ◽  
...  

Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38T and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA–DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38T (=DSM 16381T=CIP 108387T=TMW 1.1236T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2073-2078 ◽  
Author(s):  
David Miñana-Galbis ◽  
Maribel Farfán ◽  
M. Carme Fusté ◽  
J. Gaspar Lorén

Five Aeromonas strains (848TT, 93M, 431E, 849T and 869N), which were isolated from bivalve molluscs and were recognized previously by numerical taxonomy as members of an unknown Aeromonas taxon, were subjected to a polyphasic taxonomic study. DNA–DNA hybridization experiments showed that DNA of strain 848TT was <70 % similar (27–45 %) to that of the type/reference strains of the current Aeromonas hybridization groups (HGs), but 93 % similar to that of strain 93M. The DNA G+C content of the five strains ranged from 59·0 to 59·4 mol%. 16S rRNA gene sequence analysis confirmed that the strains belonged to the genus Aeromonas and showed high similarity to Aeromonas encheleia. Amplified fragment length polymorphism fingerprinting clustered the novel strains in a homogeneous group with low genotypic relatedness to other Aeromonas species. Useful phenotypic features for differentiating the five isolates from other Aeromonas species include their negative reactions in tests for indole production, lysine decarboxylase, gas from glucose and starch hydrolysis. From the results of this study, the name Aeromonas molluscorum sp. nov. is proposed for these strains, with the type strain 848TT (=CECT 5864T=LMG 22214T).


2005 ◽  
Vol 55 (2) ◽  
pp. 615-620 ◽  
Author(s):  
M. Vancanneyt ◽  
P. Neysens ◽  
M. De Wachter ◽  
K. Engelbeen ◽  
C. Snauwaert ◽  
...  

Three heterofermentative lactic acid bacteria, obtained from Greek and Belgian artisanal wheat sourdoughs, were preliminarily identified as Lactobacillus brevis-like after screening using whole-cell protein fingerprinting and 16S rRNA gene sequence analysis. The three sourdough isolates showed nearly identical sequences (>99·7 % sequence similarity), and highest similarities of 98·2 and 97·6 % were obtained to the species Lactobacillus spicheri and Lactobacillus brevis, respectively. Growth characteristics, biochemical features, amplified fragment length polymorphism fingerprinting, DNA–DNA hybridizations and DNA G+C contents demonstrated that the isolates represent two novel Lactobacillus species. The names Lactobacillus acidifarinae sp. nov. and Lactobacillus zymae sp. nov. are proposed and the type strains are LMG 22200T (=R-19065T=CCM 7240T) and LMG 22198T (=R-18615T=CCM 7241T), respectively.


2009 ◽  
Vol 75 (10) ◽  
pp. 3348-3351 ◽  
Author(s):  
Jill Tomaras ◽  
Jason W. Sahl ◽  
Robert L. Siegrist ◽  
John R. Spear

ABSTRACT Microbial diversity of septic tank effluent (STE) and the biomat that is formed as a result of STE infiltration on soil were characterized by 16S rRNA gene sequence analysis. Results indicate that microbial communities are different within control soil, STE, and the biomat and that microbes found in STE are not found in the biomat. The development of a stable soil biomat appears to provide the best on-site water treatment or protection for subsequent groundwater interactions of STE.


2006 ◽  
Vol 56 (5) ◽  
pp. 1085-1088 ◽  
Author(s):  
Soon Dong Lee

A novel actinomycete, strain N3-7T, was isolated from a natural cave in Jeju, Republic of Korea, using a dilution method and was subjected to characterization using polyphasic taxonomy. A 16S rRNA gene sequence analysis revealed that the organism belonged to the phylogenetic cluster of the genus Actinocorallia and was most closely related to Actinocorallia glomerata and Actinocorallia longicatena (97.6 and 97.5 % similarity, respectively). The main chemotaxonomic properties of strain N3-7T, such as the principal amino acid of the peptidoglycan, the predominant menaquinone and the polar lipid profile, supported classification in the genus Actinocorallia. The organism was readily differentiated from Actinocorallia species with validly published names on the basis of a broad range of phenotypic properties. Thus the isolate represents a novel species of the genus Actinocorallia, for which the name Actinocorallia cavernae sp. nov. is proposed. The type strain is strain N3-7T (=JCM 13278T=NRRL B-24429T).


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2588-2593 ◽  
Author(s):  
Bárbara Almeida ◽  
Ivone Vaz-Moreira ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
Gilda Carvalho ◽  
...  

A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11T, was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11T were Patulibacter ginsengiterrae CECT 7603T (96.8 % similarity), Patulibacter minatonensis DSM 18081T (96.6 %) and Patulibacter americanus DSM 16676T (96.6 %). Phenotypic characterization supports the inclusion of strain I11T within the genus Patulibacter (phylum Actinobacteria) . However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11T ( = DSM 25962T = CECT 8141T).


2007 ◽  
Vol 57 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Yoshimi Benno

A bacterial strain isolated from human faeces, M-165T, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Parabacteroides. Strain M-165T was closely related to Parabacteroides merdae strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165T were similar to those of P. merdae, the isolate could be differentiated from P. merdae by means of API 20A tests for l-arabinose and l-rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to P. merdae JCM 9497T (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165T represents a novel species of the genus Parabacteroides, for which the name Parabacteroides johnsonii sp. nov. is proposed. The type strain is M-165T (=JCM 13406T=DSM 18315T).


Sign in / Sign up

Export Citation Format

Share Document