scholarly journals Alterations in T-Cell Receptor Vβ Repertoire of CD4 and CD8 T Lymphocytes in Human Immunodeficiency Virus-Infected Children

2003 ◽  
Vol 10 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Monica Kharbanda ◽  
Thomas W. McCloskey ◽  
Rajendra Pahwa ◽  
Mei Sun ◽  
Savita Pahwa

ABSTRACT Perturbations in the T-cell receptor (TCR) Vβ repertoire were assessed in the CD4 and CD8 T lymphocytes of human immunodeficiency virus (HIV)-infected children who were receiving therapy during the chronic phase of infection by flow cytometry (FC) and PCR analysis. By FC, representation of 21 TCR Vβ subfamilies was assessed for an increased or decreased percentage in CD4 and CD8 T cells, and by PCR, 22 TCR Vβ subfamilies of CD4 and CD8 T cells were analyzed by CDR3 spectratyping for perturbations and reduction in the number of peaks, loss of Gaussian distribution, or clonal dominance. The majority of the TCR Vβ subfamilies were examined by both methods and assessed for deviation from the norm by comparison with cord blood samples. The CD8-T-lymphocyte population exhibited more perturbations than the CD4 subset, and clonal dominance was present exclusively in CD8 T cells. Of the 55 total CD8-TCR Vβ families classified with clonal dominance by CDR3 spectratyping, only 18 of these exhibited increased expression by FC. Patients with high numbers of CD8-TCR Vβ families with decreased percentages had reduced percentages of total CD4 T cells. Increases in the number of CD4-TCR Vβ families with increased percentages showed a positive correlation with skewing. Overall, changes from normal were often discordant between the two methods. This study suggests that the assessment of HIV-induced alterations in TCR Vβ families at cellular and molecular levels yields different information and that our understanding of the immune response to HIV is still evolving.

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Linda A. Trimble ◽  
Judy Lieberman

Although human immunodeficiency virus (HIV)-infected subjects without acquired immunodeficiency syndrome have a high frequency of HIV-specific CD8 T lymphocytes, freshly isolated lymphocytes frequently lack detectable HIV-specific cytotoxicity. However, this effector function becomes readily apparent after overnight culture. To investigate reasons for T-cell dysfunction, we analyzed T-cell expression of the cytolytic protease granzyme A and of CD3ζ, the signaling component of the T-cell receptor complex. An increased proportion of CD4 and CD8 T cells from HIV-infected donors contain granzyme A, consistent with the known increased frequency of activated T cells. In 28 HIV-infected donors with mild to advanced immunodeficiency, a substantial fraction of circulating T cells downmodulated CD3ζ (fraction of T cells expressing CD3ζ, 0.74 ± 0.16 v 1.01 ± 0.07 in healthy donors; P < .0000005). CD3ζ expression is downregulated more severely in CD8 than CD4 T cells, decreases early in infection, and correlates with declining CD4 counts and disease stage. CD3ζ expression increases over 6 to 16 hours of culture in an interleukin-2–dependent manner, coincident with restoration of viral-specific cytotoxicity. Impaired T-cell receptor signaling may help explain why HIV-specific cytotoxic T lymphocytes fail to control HIV replication.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Linda A. Trimble ◽  
Judy Lieberman

Abstract Although human immunodeficiency virus (HIV)-infected subjects without acquired immunodeficiency syndrome have a high frequency of HIV-specific CD8 T lymphocytes, freshly isolated lymphocytes frequently lack detectable HIV-specific cytotoxicity. However, this effector function becomes readily apparent after overnight culture. To investigate reasons for T-cell dysfunction, we analyzed T-cell expression of the cytolytic protease granzyme A and of CD3ζ, the signaling component of the T-cell receptor complex. An increased proportion of CD4 and CD8 T cells from HIV-infected donors contain granzyme A, consistent with the known increased frequency of activated T cells. In 28 HIV-infected donors with mild to advanced immunodeficiency, a substantial fraction of circulating T cells downmodulated CD3ζ (fraction of T cells expressing CD3ζ, 0.74 ± 0.16 v 1.01 ± 0.07 in healthy donors; P < .0000005). CD3ζ expression is downregulated more severely in CD8 than CD4 T cells, decreases early in infection, and correlates with declining CD4 counts and disease stage. CD3ζ expression increases over 6 to 16 hours of culture in an interleukin-2–dependent manner, coincident with restoration of viral-specific cytotoxicity. Impaired T-cell receptor signaling may help explain why HIV-specific cytotoxic T lymphocytes fail to control HIV replication.


2007 ◽  
Vol 81 (22) ◽  
pp. 12670-12674 ◽  
Author(s):  
Douglas A. Bazdar ◽  
Scott F. Sieg

ABSTRACT Proliferation responses of naïve CD4+ T cells to T-cell receptor and interleukin-7 (IL-7) stimulation were evaluated by using cells from human immunodeficiency virus-positive (HIV+) donors. IL-7 enhanced responses to T-cell receptor stimulation, and the magnitude of this enhancement was similar in cells from healthy controls and from HIV+ subjects. The overall response to T-cell receptor stimulation alone or in combination with IL-7, however, was diminished among viremic HIV+ donors and occurred independent of antigen-presenting cells. Frequencies of CD127+ cells were related to the magnitudes of proliferation enhancement that were mediated by IL-7. Thus, IL-7 enhances but does not fully restore the function of naïve CD4+ T cells from HIV-infected persons.


2000 ◽  
Vol 74 (16) ◽  
pp. 7320-7330 ◽  
Author(s):  
Linda A. Trimble ◽  
Premlata Shankar ◽  
Mark Patterson ◽  
Johanna P. Daily ◽  
Judy Lieberman

ABSTRACT Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3ζ, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3ζ down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3ζ-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3ζ−. CD8 T cells with down-modulated CD3ζ also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR+ CD62L−). After T-cell activation, CD3ζ-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor α-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3ζ is not reexpressed even after IL-2 exposure.


2000 ◽  
Vol 74 (5) ◽  
pp. 2121-2130 ◽  
Author(s):  
Latifa Bouhdoud ◽  
Patricia Villain ◽  
Abderrazzak Merzouki ◽  
Maximilian Arella ◽  
Clément Couture

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection triggers a cytotoxic T-lymphocyte (CTL) response mediated by CD8+ and perhaps CD4+ CTLs. The mechanisms by which HIV-1 escapes from this CTL response are only beginning to be understood. However, it is already clear that the extreme genetic variability of the virus is a major contributing factor. Because of the well-known ability of altered peptide ligands (APL) to induce a T-cell receptor (TCR)-mediated anergic state in CD4+ helper T cells, we investigated the effects of HIV-1 sequence variations on the proliferation and cytotoxic activation of a human CD4+ CTL clone (Een217) specific for an epitope composed of amino acids 410 to 429 of HIV-1 gp120. We report that a natural variant of this epitope induced a functional anergic state rendering the T cells unable to respond to their antigenic ligand and preventing the proliferation and cytotoxic activation normally induced by the original antigenic peptide. Furthermore, the stimulation of Een217 cells with this APL generated altered TCR-proximal signaling events that have been associated with the induction of T-cell anergy in CD4+ T cells. Importantly, the APL-induced anergic state of the Een217 T cells could be prevented by the addition of interleukin 2, which restored their ability to respond to their nominal antigen. Our data therefore suggest that HIV-1 variants can induce a state of anergy in HIV-specific CD4+ CTLs. Such a mechanism may allow a viral variant to not only escape the CTL response but also facilitate the persistence of other viral strains that may otherwise be recognized and eliminated by HIV-specific CTLs.


Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1839-1846
Author(s):  
MC Hannibal ◽  
DM Markovitz ◽  
GJ Nabel

Transcription directed by the human immunodeficiency virus type 2 long terminal repeat (HIV-2 LTR) responds to T-cell antigen receptor signaling. Agents that stimulate T-cell signaling pathways activated by the antigen receptor, such as phorbol ester, plant lectin, or anti-CD3 antibody treatment, have been shown to increase transcription directed by the HIV-2 LTR. In this study, we examine the activation of the HIV-2 LTR in T cells stimulated with the physiologic ligand of the T-cell receptor, antigenic peptide presented by a major histocompatibility molecule. HIV-2 reporter plasmids were transfected into the antigen- specific T-cell hybridoma, 2B4.11, where they responded to antigen- dependent activation. This antigen-mediated transcriptional activation of the HIV-2 enhancer required the presence of at least four regulatory elements in the HIV-2 enhancer, including two purine boxes, PuB1 and PuB2, an AP-1/CREB-like element (pets), and kappa B. This finding suggests that signals emanating from the antigen receptor act coordinately on a set of transcription factors that bind to conserved HIV-2 regulatory elements. Despite differences in the organization of potentially related enhancer elements in HIV-2 and IL-2, these enhancers exploit a similar signal transduction pathway to induce gene expression in antigen-activated T cells.


Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1839-1846 ◽  
Author(s):  
MC Hannibal ◽  
DM Markovitz ◽  
GJ Nabel

Abstract Transcription directed by the human immunodeficiency virus type 2 long terminal repeat (HIV-2 LTR) responds to T-cell antigen receptor signaling. Agents that stimulate T-cell signaling pathways activated by the antigen receptor, such as phorbol ester, plant lectin, or anti-CD3 antibody treatment, have been shown to increase transcription directed by the HIV-2 LTR. In this study, we examine the activation of the HIV-2 LTR in T cells stimulated with the physiologic ligand of the T-cell receptor, antigenic peptide presented by a major histocompatibility molecule. HIV-2 reporter plasmids were transfected into the antigen- specific T-cell hybridoma, 2B4.11, where they responded to antigen- dependent activation. This antigen-mediated transcriptional activation of the HIV-2 enhancer required the presence of at least four regulatory elements in the HIV-2 enhancer, including two purine boxes, PuB1 and PuB2, an AP-1/CREB-like element (pets), and kappa B. This finding suggests that signals emanating from the antigen receptor act coordinately on a set of transcription factors that bind to conserved HIV-2 regulatory elements. Despite differences in the organization of potentially related enhancer elements in HIV-2 and IL-2, these enhancers exploit a similar signal transduction pathway to induce gene expression in antigen-activated T cells.


Sign in / Sign up

Export Citation Format

Share Document