scholarly journals Laboratory Diagnosis of Amebiasis

2003 ◽  
Vol 16 (4) ◽  
pp. 713-729 ◽  
Author(s):  
Mehmet Tanyuksel ◽  
William A. Petri

SUMMARY The detection of Entamoeba histolytica, the causative agent of amebiasis, is an important goal of the clinical microbiology laboratory. To assess the scope of E. histolytica infection, it is necessary to utilize accurate diagnostic tools. As more is discovered about the molecular and cell biology of E. histolytica, there is great potential for further understanding the pathogenesis of amebiasis. Molecular biology-based diagnosis may become the technique of choice in the future because establishment of these protozoa in culture is still not a routine clinical laboratory process. In all cases, combination of serologic tests with detection of the parasite (by antigen detection or PCR) offers the best approach to diagnosis, while PCR techniques remain impractical in many developing country settings. The detection of amebic markers in serum in patients with amebic colitis and liver abscess appears promising but is still only a research tool. On the other hand, stool antigen detection tests offer a practical, sensitive, and specific way for the clinical laboratory to detect intestinal E. histolytica. All the current tests suffer from the fact that the antigens detected are denatured by fixation of the stool specimen, limiting testing to fresh or frozen samples.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Patricia Mejuto ◽  
Mariam Luengo ◽  
Julio Díaz-Gigante

The urine culture is the “gold standard” for the diagnosis of urinary tract infections (UTI) but constitutes a significant workload in the routine clinical laboratory. Due to the high percentage of negative results, there is a need for an efficient screening method, with a high negative predictive value (NPV) that could reduce the number of unnecessary culture tests. With the purpose of improving the efficiency of laboratory work, several methods for screening out the culture-negative samples have been developed, but none of them has shown adequate sensitivity (SE) and high NPV. Many authors show data about the efficacy of flow cytometry in the routine clinical laboratory. The aim of this article is to review and discuss the current literature on the feasibility of urine flow cytometry (UFC) and its utility as an alternative analytical technique in urinalysis.


2021 ◽  
Vol 6 (1) ◽  
pp. 38
Author(s):  
Kunal Garg ◽  
T. Sakari Jokiranta ◽  
Sanna Filén ◽  
Leona Gilbert

Human polymicrobial infections in tick-borne disease (TBD) patients is an emerging public health theme. However, the requirement for holistic TBD tests in routine clinical laboratories is ambiguous. TICKPLEX® PLUS is a holistic TBD test utilized herein to assess the need for multiplex and multifunctional diagnostic tools in a routine clinical laboratory. The study involved 150 specimens categorized into Lyme disease (LD)-positive (n = 48), LD-negative (n = 30), and febrile patients from whom borrelia serology was requested (n = 72, later “febrile patients”) based on reference test results from United Medix, Finland. Reference tests from DiaSorin, Immunetics, and Mikrogen Diagnostik followed the two-tier LD testing system. A comparison between the reference tests and TICKPLEX® PLUS produced 86%, 88%, and 87% positive, negative, and overall agreement, respectively. Additionally, up to 15% of LD and 11% of febrile patients responded to TBD related coinfections and opportunistic microbes. The results demonstrated that one (TICKPLEX® PLUS) test can aid in a LD diagnosis instead of four tests. Moreover, TBD is not limited to just LD, as the specimens produced immune responses to several TBD microbes. Lastly, the study indicated that the screening of febrile patients for TBDs could be a missed opportunity at reducing unreported patient cases.


1993 ◽  
Vol 70 (05) ◽  
pp. 787-793 ◽  
Author(s):  
Douglas A Triplett ◽  
Linda K Barna ◽  
Gail A Unger

SummaryLupus anticoagulants (LAs) are immunoglobulins (IgG, IgM, or both) which interfere with in vitro phospholipid (PL) dependent tests of coagulation (e.g. APTT, dilute PT, dilute Russell Viper Venom Time). These antibodies may be identified in a wide variety of clinical settings. With the exception of heparinized patient samples, the presence of LAs is often the most common cause of an unexplained APTT in a routine clinical laboratory. The diagnosis of LAs is difficult due to variable screening reagent sensitivity and intrinsic heterogeneity of LAs. Recently, Rauch and colleagues have shown human monoclonal hybridoma LAs were inhibited by hexagonal (II) phase PLs. In contrast, lamellar phase PLs had no effect. We have evaluated a new assay system, Staclot LA®, which utilizes a hexagonal (II) phase PL (egg phosphatidylethanolamine [EPE]) as a confirmatory test for LAs. Plasma samples from the following patient populations were studied: LA positive, heparinized, oral anticoagulated, hemophilia A and B, and specific factor inhibitors (factors V, VIII, IX). Unlike previous studies, the LA positive patients were a mixed population including: autoimmune diseases, drug-induced, and post-infection. Our findings confirm the specificity of hexagonal (II) phase PL neutralization of LAs.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 631
Author(s):  
Kiran Kaladharan ◽  
Ashish Kumar ◽  
Pallavi Gupta ◽  
Kavitha Illath ◽  
Tuhin Subhra Santra ◽  
...  

The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus and the mechanisms underlying most of the approaches have been extensively investigated. However, most of these techniques are bulk approaches that are cell-specific and have low throughput delivery. In comparison to bulk measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great interest. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. This review article aims to cover various microfluidic-based physical methods for single-cell intracellular delivery such as electroporation, mechanoporation, microinjection, sonoporation, optoporation, magnetoporation, and thermoporation and their analysis. The mechanisms of various physical methods, their applications, limitations, and prospects are also elaborated.


1977 ◽  
Vol 23 (1) ◽  
pp. 28-34 ◽  
Author(s):  
W H Siede ◽  
U B Seiffert

Abstract We present a new method for quantitative determination of alkaline phosphatase isoenzymes. This method consists of electrophoretic separation on cellulose acetate membranes, special fixation technique to avoid elution and diffusion of enzyme protein during incubation, specific staining, and quantitative evaluation by densitometric measurement. We highly recommend the precedure for routine clinical laboratory use. In all normal individuals we observe two isoenzymes of hepatic origin and one isoenzyme each of osseous, intestinal, and biliary origin. Quantitative normal values are presented. Precision of the method is calculated, the CV being less than 10%. The exactness of densitometric quantification is proved by comparison with kinetic assay of alkaline phosphatase isoenzymes by use of an elution method. Clinical implications of alkaline phosphatase isoenzymograms are reported and discussed in detail.


Author(s):  
M A Jenkins ◽  
M D Guerin

Capillary electrophoresis is a technique that can be automated for the separation of charged particles. By investigating suitable sample dilution and injection time and adhering to a strict washing procedure we have been able to quantify paraproteins in serum samples. This has enabled us to use the technique of capillary electrophoresis for the provision of serum protein electrophoresis in a routine clinical laboratory. We present our findings of 260 serum samples, which included 76 samples with paraproteins analysed by both capillary electrophoresis (EC) and high resolution agarose gel electrophoresis (HRAGE). CE was able to detect all the monoclonal bands detected by HRAGE, and, in particular, better able to detect IgA monoclonal bands occurring in the beta region. The major advantages of CE over HRAGE relate to the automated nature of CE with the elimination of the need for a densitometer.


2011 ◽  
Vol 135 (7) ◽  
pp. 925-934
Author(s):  
Linsheng Zhang ◽  
Sherine S. L. Chan ◽  
Daynna J. Wolff

Abstract Context.—Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. Objectives.—To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. Data Sources.—Review of pertinent published literature and relevant Internet databases. Conclusions.—Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis.


Sign in / Sign up

Export Citation Format

Share Document