scholarly journals A Repurposing Approach Identifies Off-Patent Drugs with Fungicidal Cryptococcal Activity, a Common Structural Chemotype, and Pharmacological Properties Relevant to the Treatment of Cryptococcosis

2012 ◽  
Vol 12 (2) ◽  
pp. 278-287 ◽  
Author(s):  
Arielle Butts ◽  
Louis DiDone ◽  
Kristy Koselny ◽  
Bonnie K. Baxter ◽  
Yeissa Chabrier-Rosello ◽  
...  

ABSTRACT New, more accessible therapies for cryptococcosis represent an unmet clinical need of global importance. We took a repurposing approach to identify previously developed drugs with fungicidal activity toward Cryptococcus neoformans , using a high-throughput screening assay designed to detect drugs that directly kill fungi. From a set of 1,120 off-patent medications and bioactive molecules, we identified 31 drugs/molecules with fungicidal activity, including 15 drugs for which direct antifungal activity had not previously been reported. A significant portion of the drugs are orally bioavailable and cross the blood-brain barrier, features key to the development of a widely applicable anticryptococcal agent. Structural analysis of this set revealed a common chemotype consisting of a hydrophobic moiety linked to a basic amine, features that are common to drugs that cross the blood-brain barrier and access the phagolysosome, two important niches of C. neoformans . Consistent with their fungicidal activity, the set contains eight drugs that are either additive or synergistic in combination with fluconazole. Importantly, we identified two drugs, amiodarone and thioridazine, with activity against intraphagocytic C. neoformans . Finally, the set of drugs is also enriched for molecules that inhibit calmodulin, and we have confirmed that seven drugs directly bind C. neoformans calmodulin, providing a molecular target that may contribute to the mechanism of antifungal activity. Taken together, these studies provide a foundation for the optimization of the antifungal properties of a set of pharmacologically attractive scaffolds for the development of novel anticryptococcal therapies.

2021 ◽  
Vol 22 (3) ◽  
pp. 1231
Author(s):  
Ihab M. Abdallah ◽  
Kamal M. Al-Shami ◽  
Euitaek Yang ◽  
Amal Kaddoumi

In Alzheimer’s disease (AD), several studies have reported blood-brain barrier (BBB) breakdown with compromised function. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are transport proteins localized at the BBB luminal membrane and play an important role in the clearance of amyloid-β (Aβ). The purpose of this study was to investigate the effect of pharmacological inhibition of Aβ efflux transporters on BBB function and Aβ accumulation and related pathology. Recently, we have developed an in vitro high-throughput screening assay to screen for compounds that modulate the integrity of a cell-based BBB model, which identified elacridar as a disruptor of the monolayer integrity. Elacridar, an investigational compound known for its P-gp and BCRP inhibitory effect and widely used in cancer research. Therefore, it was used as a model compound for further evaluation in a mouse model of AD, namely TgSwDI. TgSwDI mouse is also used as a model for cerebral amyloid angiopathy (CAA). Results showed that P-gp and BCRP inhibition by elacridar disrupted the BBB integrity as measured by increased IgG extravasation and reduced expression of tight junction proteins, increased amyloid deposition due to P-gp, and BCRP downregulation and receptor for advanced glycation end products (RAGE) upregulation, increased CAA and astrogliosis. Further studies revealed the effect was mediated by activation of NF-κB pathway. In conclusion, results suggest that BBB disruption by inhibiting P-gp and BCRP exacerbates AD pathology in a mouse model of AD, and indicate that therapeutic drugs that inhibit P-gp and BCRP could increase the risk for AD.


2016 ◽  
Vol 18 (suppl_6) ◽  
pp. vi49-vi50
Author(s):  
Choi-Fong Cho ◽  
Justin Wolfe ◽  
Colin Fazden ◽  
Kalvis Hornburg ◽  
E. Antonio Chiocca ◽  
...  

1996 ◽  
Vol 85 (6) ◽  
pp. 1056-1065 ◽  
Author(s):  
Bernhard Zünkeler ◽  
Richard E. Carson ◽  
Jeff Olson ◽  
Ronald G. Blasberg ◽  
Hetty Devroom ◽  
...  

✓ Hyperosmolar blood-brain barrier disruption (HBBBD), produced by infusion of mannitol into the cerebral arteries, has been used in the treatment of brain tumors to increase drug delivery to tumor and adjacent brain. However, the efficacy of HBBBD in brain tumor therapy has been controversial. The goal of this study was to measure changes in vascular permeability after HBBBD in patients with malignant brain tumors. The permeability (K1) of tumor and normal brain blood vessels was measured using rubidium-82 and positron emission tomography before and repeatedly at 8- to 15-minute intervals after HBBBD. Eighteen studies were performed in 13 patients, eight with glioblastoma multiforme and five with anaplastic astrocytoma. The HBBBD increased K1 in all patients. Baseline K1 values were 2.1 ± 1.4 and 34.1 ± 22.1 µl/minute/ml (± standard deviation) for brain and tumor, respectively. The peak absolute increases in K1 following HBBBD were 20.8 ± 11.7 and 19.7 ± 10.7 µl/minute/ml for brain and tumor, corresponding to percentage increases of approximately 1000% in brain and approximately 60% in tumor. The halftimes for return of K1 to near baseline for brain and tumor were 8.1 ± 3.8 and 4.2 ± 1.2 minutes, respectively. Simulations of the effects of HBBBD made using a very simple model with intraarterial methotrexate, which is exemplary of drugs with low permeability, indicate that 1) total exposure of the brain and tumor to methotrexate, as measured by the methotrexate concentration-time integral (or area under the curve), would increase with decreasing infusion duration and would be enhanced by 130% to 200% and by 7% to 16%, respectively, compared to intraarterial infusion of methotrexate alone; and 2) exposure time at concentrations above 1 µM, the minimal concentration required for the effects of methotrexate, would not be enhanced in tumor and would be enhanced by only 10% in brain. Hyperosmolar blood-brain barrier disruption transiently increases delivery of water-soluble compounds to normal brain and brain tumors. Most of the enhancement of exposure results from trapping the drug within the blood-brain barrier, an effect of the very transient alteration of the blood-brain barrier by HBBBD. Delivery is most effective when a drug is administered within 5 to 10 minutes after disruption. However, the increased exposure and exposure time that occur with methotrexate, the permeability of which is among the lowest of the agents currently used clinically, are limited and the disproportionate increase in brain exposure, compared to tumor exposure, may alter the therapeutic index of many drugs.


2020 ◽  
Vol 432 (14) ◽  
pp. 3989-4009 ◽  
Author(s):  
Zachary R. Crook ◽  
Emily Girard ◽  
Gregory P. Sevilla ◽  
Morgan Merrill ◽  
Della Friend ◽  
...  

1982 ◽  
Vol 57 (3) ◽  
pp. 394-398 ◽  
Author(s):  
Kazuo Yamada ◽  
Yukitaka Ushio ◽  
Toru Hayakawa ◽  
Amami Kato ◽  
Noriko Yamada ◽  
...  

✓ Quantitative autoradiographic technique was applied in measuring blood-brain barrier (BBB) permeability of autochthonous gliomas in rats. In small tumors (less than 2 mm in diameter), no increase in BBB permeability was noted. As the tumor grew and neovascularization occurred, BBB permeability increased in the center of the tumor, and it was suggested that the BBB was partly disrupted in the neovascularized vessels. In the fully grown tumors, BBB permeability was markedly increased in the viable part of the tumor to levels similar to the choroid plexus. Yet, the BBB was partly preserved at the periphery of the tumor and in the brain adjacent to the tumor. The heterogeneity of the BBB phenomenon according to the stage of tumor growth may be a major obstacle for uptake of chemotherapeutic drugs that do not cross the BBB easily.


1988 ◽  
Vol 69 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Stephen C. Saris ◽  
Steven A. Rosenberg ◽  
Robert B. Friedman ◽  
Joshua T. Rubin ◽  
David Barba ◽  
...  

✓ Recombinant interleukin-2 (rIL-2) is an immunotherapeutic agent with efficacy against certain advanced cancers. The penetration of rIL-2 across the blood-cerebrospinal fluid (CSF) barrier was studied in 12 cancer patients who had no evidence of tumor involvement of the central nervous system. At different times during treatment with intravenous rIL-2, CSF was withdrawn either continuously for 8 to 26 hours via a lumbar subarachnoid catheter (in eight patients) or by a single lumbar puncture (in four). Bioassay showed the appearance of rIL-2 in lumbar CSF 4 to 6 hours after the first intravenous dose, a rise over 2 to 4 hours to a plateau of 3 to 9 U/ml, and clearance to less than 0.1 U/ml by 10 hours after the last dose. An abnormally elevated CSF albumin level in two of the twelve patients indicated alteration of the blood-brain barrier. There were no abnormalities in the CSF glucose level or white blood cell count. The CSF pharmacokinetics contrast with the rapid elimination of rIL-2 from plasma and demonstrate significant blood-CSF barrier penetration. These data support the possibility of achieving CSF levels of rIL-2 that are adequate to maintain activity of lymphokine-activated killer cells after parenteral administration, and argue for rIL-2-associated disruption of the human blood-brain barrier in some patients.


1992 ◽  
Vol 77 (3) ◽  
pp. 407-410 ◽  
Author(s):  
Chung-Ching Chio ◽  
Takehiko Baba ◽  
Keith L. Black

✓ The authors have previously reported that intracarotid infusion of 5 µg leukotriene C4 (LTC4) selectively increases blood-tumor barrier permeability in rat RG-2 tumors. In this study, rats harboring RG-2 tumors were given 15-minute intracarotid infusions of LTC4 at concentrations ranging from 0.5 µg to 50.0 µg (seven rats in each dose group). Blood-tumor and blood-brain barrier permeability were determined by quantitative autoradiography using 14C aminoisobutyric acid. The transfer constant for permeability (Ki) within the tumors was increased twofold by LTC4 doses of 2.5, 5.0, and 50.0 µg compared to vehicle alone (90.00 ±21.14, 92.68 ± 15.04, and 80.17 ± 16.15 vs. 39.37 ± 6.45 µl/gm/min, respectively; mean ± standard deviation; p < 0.01). No significant change in Ki within the tumors was observed at the 0.5-µg LTC4 dose. Blood-brain barrier permeability was selectively increased within the tumors. At no dose in this study did leukotrienes increase permeability within normal brain. To determine the duration of increased opening of the blood-tumor barrier by LTC4 administration, Ki was measured at 15, 30, and 60 minutes after termination of a 15-minute LTC4 infusion (seven rats at each time point). The mean Ki value was still high at 15 minutes (92.68 ± 15.04 µl/gm/min), but declined at 30 minutes (56.58 ± 12.50 µl/gm/min) and 60 minutes (55.40 ± 8.10 µl/gm/min) after the end of LTC4 infusion. Sulfidopeptide leukotrienes LTC4, LTD4, LTE4 and LTF4 were infused to compare their potency in opening the blood-tumor barrier. The mean leukotriene E4 was the most potent, increasing the permeability value 37½ fold compared with vehicle alone (139.86 ± 23.95 vs. 39.37 ± 6.45 µl/gm/min).


1989 ◽  
Vol 70 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Joseph T. Alexander ◽  
Stephen C. Saris ◽  
Edward H. Oldfield

✓ Carbon-14-labeled aminoisobutyric acid was used to determine local blood-to-tissue transfer constants in 22 Fischer rats with intracerebral 9L gliosarcomas that received either high-dose parenteral interleukin-2 (IL-2) or a control injection. In tumor and peritumoral tissue, the transfer constants in the IL-2-treated animals (89.6 ± 14.6 and 35.8 ± 6.0, respectively, mean ± standard error of the mean) were larger (p < 0.05) than in control animals (61.4 ± 6.4 and 14.6 ± 2.2, respectively). In contrast, in normal frontal and occipital tissue contralateral to the tumor-bearing hemisphere, there was no significant difference between the transfer constants in IL-2-treated and control animals. Furthermore, treatment of animals with IL-2 excipient caused no change in permeability as compared to animals treated with Hanks' balanced salt solution. Parenteral injection of IL-2 increases blood-brain barrier disruption in tumor-bearing rat brain but does not increase the vascular permeability of normal brain. Methods to prevent this increased tumor vessel permeability are required before parenteral IL-2 can be used safely for the treatment of primary or metastatic brain tumors.


1976 ◽  
Vol 44 (4) ◽  
pp. 418-424 ◽  
Author(s):  
Joseph H. Goodman ◽  
W. George Bingham ◽  
William E. Hunt

✓ Endothelial changes leading to edema formation are examined in the primate spinal cord (Macaca mulatta) following a lesion created by a 20-gm weight falling 15 cm onto the exposed dura. Intravascular perfusion of a paraformaldehyde-glutaraldehyde solution followed by carbon black provides adequate fixation of vascular structures and glial elements. Myelin is poorly preserved. Ultrastructural alterations of the blood-brain barrier consist of loss of integrity of the endothelial tight junctions. Edema caused by vascular disruption and parenchymatous extravasation of intravascular contents is observed along with glial swelling. Interglial gap junctions persist in areas of marked cellular separation and do not impede the migration of edema fluid.


Sign in / Sign up

Export Citation Format

Share Document