scholarly journals The Phosducin-Like Protein PhnA Is Required for Gβγ-Mediated Signaling for Vegetative Growth, Developmental Control, and Toxin Biosynthesis in Aspergillus nidulans

2006 ◽  
Vol 5 (2) ◽  
pp. 400-410 ◽  
Author(s):  
Jeong-Ah Seo ◽  
Jae-Hyuk Yu

ABSTRACT Phosducin or phosducin-like protein (PhLP) is a positive regulator of Gβγ activity. The Gβ (SfaD) and Gγ (GpgA) subunits function in vegetative growth and developmental control in the model filamentous fungus Aspergillus nidulans. To better understand the nature of Gβγ-mediated signaling, phnA, encoding an A. nidulans PhLP, has been studied. Deletion of phnA resulted in phenotypes almost identical to those caused by deletion of sfaD, i.e., reduced biomass, asexual sporulation in liquid submerged culture, and defective fruiting body formation, suggesting that PhnA is necessary for Gβ function. The requirement for the RGS protein FlbA in asexual sporulation could be bypassed by the ΔphnA mutation, indicating that PhnA functions in FlbA-controlled vegetative growth signaling, primarily mediated by the heterotrimeric G protein composed of FadA (Gα), SfaD, and GpgA. However, whereas deletion of fadA restored both asexual sporulation and the production of sterigmatocystin (ST), deletion of sfaD, gpgA, or phnA failed to restore ST production in the ΔflbA mutant. Further studies revealed that SfaD, GpgA, and PhnA are necessary for the expression of aflR, encoding the transcriptional activator for the ST biosynthetic genes, and subsequent ST biosynthesis. Overexpression of aflR bypassed the need for SfaD in ST production, indicating that the results of SfaD-mediated signaling may include transcriptional activation of aflR. Potential differential roles of FadA, Gβγ, and FlbA in controlling ST biosynthesis are further discussed.

2005 ◽  
Vol 187 (24) ◽  
pp. 8537-8541 ◽  
Author(s):  
Toshiyuki Ueki ◽  
Chun-Ying Xu ◽  
Sumiko Inouye

ABSTRACT A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.


1995 ◽  
Vol 6 (3) ◽  
pp. 297-310 ◽  
Author(s):  
X Xiang ◽  
A H Osmani ◽  
S A Osmani ◽  
M Xin ◽  
N R Morris

During a study of the genetics of nuclear migration in the filamentous fungus Aspergillus nidulans, we cloned a gene, nudF, which is required for nuclear migration during vegetative growth as well as development. The NUDF protein level is controlled by another protein NUDC, and extra copies of the nudF gene can suppress the nudC3 mutation. nudF encodes a protein with 42% sequence identity to the human LIS-1 (Miller-Dieker lissencephaly-1) gene, which is required for proper neuronal migration during brain development. This strong similarity suggests that the LIS-1 gene product may have a function similar to that of NUDF and supports previous findings to suggest that nuclear migration may play a role in neuronal migration.


2007 ◽  
Vol 6 (9) ◽  
pp. 1697-1700 ◽  
Author(s):  
Andrew Breakspear ◽  
Michelle Momany

ABSTRACT Microarray analysis was used to identify transcriptional changes in early vegetative growth of the filamentous fungus Aspergillus nidulans. The results suggest that the previously identified conidiation genes dewA, fluG, and stuA may function in isotropic expansion during early vegetative growth and asexual reproduction.


Author(s):  
Antonio Franco‐Cano ◽  
Ana T. Marcos ◽  
Joseph Strauss ◽  
David Cánovas

Sign in / Sign up

Export Citation Format

Share Document