scholarly journals First Complete Genome Sequence of Chronic Bee Paralysis Virus Isolated from Honey Bees ( Apis mellifera ) in China

2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Beibei Li ◽  
Chunsheng Hou ◽  
Shuai Deng ◽  
Xuefeng Zhang ◽  
Yanna Chu ◽  
...  

Chronic bee paralysis virus (CBPV) is a serious viral disease affecting adult bees. We report here the complete genome sequence of CBPV, which was isolated from a honey bee colony with the symptom of severe crawling. The genome of CBPV consists of two segments, RNA 1 and RNA 2, containing respective overlapping fragments.

2014 ◽  
Vol 59 (No. 1) ◽  
pp. 1-10 ◽  
Author(s):  
HF Abou-Shaara

Foraging behaviour is one of the distinctive behaviours of honey bees, Apis mellifera. This behaviour is the link between the honey bee colony and the ambient environment. Therefore, various in-colony and out-colony factors have an impact on this behaviour, and many studies have been employed to investigate these factors. Foraging behaviour is not advantageous only for the colony and for plant pollination but also has other benefits. In contrast, some disadvantages have also been discovered to be linked with foraging activity. Practically speaking, the control over this behaviour is very important to maximize colony products as well as to increase other agricultural benefits. This paper presents a review on foraging activity including; the regulation of foraging tasks, factors impacting this behaviour, foraging preference, variations between subspecies, monitoring methods as well as the possible methods for controlling this behaviour. As concluded from this review, more work needs to be performed in order to elucidate certain aspects of foraging behaviour.  


2017 ◽  
Vol 5 (26) ◽  
Author(s):  
Urska Jamnikar-Ciglenecki ◽  
Ivan Toplak ◽  
Urska Kuhar

ABSTRACT Chronic bee paralysis virus (CBPV) causes an infectious and contagious disease of adult honeybees. Here, we report the complete genome sequence of CBPV strain SLO/M92/2010. This is the first published complete genome of CBPV in Apis mellifera carnica, which provides important additional knowledge about the divergence of the CBPV genome.


2020 ◽  
Vol 9 (28) ◽  
Author(s):  
Raied Abou Kubaa ◽  
Annalisa Giampetruzzi ◽  
Rocco Addante ◽  
Maria Saponari

ABSTRACT In this study, we documented the complete coding genome sequence of a Black queen cell virus (BQCV) isolate from honey bees in Italy. This genome sequence illustrates a high similarity with other BQCV isolates reported worldwide and could provide insights into BQCV genome phylogeny and divergence.


Virology ◽  
2012 ◽  
Vol 432 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Se E. Choe ◽  
Lien T.K. Nguyen ◽  
Jin H. Noh ◽  
Chang H. Kweon ◽  
Kondreddy E. Reddy ◽  
...  

2018 ◽  
Vol 62 (2) ◽  
pp. 223-232
Author(s):  
Dylan Cleary ◽  
Allen L. Szalanski ◽  
Clinton Trammel ◽  
Mary-Kate Williams ◽  
Amber Tripodi ◽  
...  

Abstract A study was conducted on the mitochondrial DNA genetic diversity of feral colonies and swarms of Apis mellifera from ten counties in Utah by sequencing the intergenic region of the cytochrome oxidase (COI-COII) gene region. A total of 20 haplotypes were found from 174 honey bee colony samples collected from 2008 to 2017. Samples belonged to the A (African) (48%); C (Eastern Europe) (43%); M (Western Europe) (4%); and O (Oriental) lineages (5%). Ten African A lineage haplotypes were observed with two unique to Utah among A lineage haplotypes recorded in the US. Haplotypes belonging to the A lineage were observed from six Utah counties located in the southern portion of the State, from elevations as high as 1357 m. All five C lineage haplotypes that were found have been observed from queen breeders in the US. Three haplotypes of the M lineage (n=7) and two of the O lineage (n=9) were also observed. This study provides evidence that honey bees of African descent are both common and diverse in wild populations of honey bees in southern Utah. The high levels of genetic diversity of A lineage honey bee colonies in Utah provide evidence that the lineage may have been established in Utah before the introduction of A lineage honey bees from Brazil to Texas in 1990.


VirusDisease ◽  
2018 ◽  
Vol 29 (4) ◽  
pp. 453-460 ◽  
Author(s):  
R. Aruna ◽  
M. R. Srinivasan ◽  
V. Balasubramanian ◽  
R. Selvarajan

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kerstin Seitz ◽  
Katharina Buczolich ◽  
Alžbeta Dikunová ◽  
Pavel Plevka ◽  
Karen Power ◽  
...  

Abstract Among the many diseases compromising the well-being of the honey bee (Apis mellifera) the chronic paralysis syndrome of adult honey bees is one of the best described. The causative agent, chronic bee paralysis virus (CBPV), is a positive sense, single-stranded RNA virus with a segmented genome. Segment 1 encodes three putative open reading frames (ORFs), including the RNA-dependent RNA polymerase and other non-structural protein coding regions. Segment 2 encodes four putative ORFs, which contain the genes of supposed structural proteins. In this study, we established a reverse genetic system for CBPV by molecular cloning of DNA copies of both genome segments. CBPV rescue was studied in imago and honey bee pupae infection models. Virus replication and progeny virus production was only initiated when capped RNAs of both genome segments were injected in honey bees. As injection of these clonal RNAs caused clinical symptoms similar to wild-type CBPV infection, we conclude that the novel molecular clone fulfilled Koch’s postulates. Our virus clone will enable in-depth analysis of CBPV pathogenesis and help to increase knowledge about this important honey bee disease.


2015 ◽  
Vol 59 (2) ◽  
pp. 63-72 ◽  
Author(s):  
Lanting Ma ◽  
Ying Wang ◽  
Xiaobo Hang ◽  
Hongfang Wang ◽  
Weiren Yang ◽  
...  

AbstractAlpha-linolenic acid (ALA), which is an n-3 polyunsaturated fatty acid (PUFA), influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A), 2 (group B), 4 (group C), 6 (group D), 8 (group E), and 10% (group F). In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05). The workers’ midgut Lipase (LPS) activity of group C was significantly lower than that of the other groups (P<0.01). The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05). However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01). These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.


Sign in / Sign up

Export Citation Format

Share Document