scholarly journals The foraging behaviour of honey bees, Apis mellifera: a review

2014 ◽  
Vol 59 (No. 1) ◽  
pp. 1-10 ◽  
Author(s):  
HF Abou-Shaara

Foraging behaviour is one of the distinctive behaviours of honey bees, Apis mellifera. This behaviour is the link between the honey bee colony and the ambient environment. Therefore, various in-colony and out-colony factors have an impact on this behaviour, and many studies have been employed to investigate these factors. Foraging behaviour is not advantageous only for the colony and for plant pollination but also has other benefits. In contrast, some disadvantages have also been discovered to be linked with foraging activity. Practically speaking, the control over this behaviour is very important to maximize colony products as well as to increase other agricultural benefits. This paper presents a review on foraging activity including; the regulation of foraging tasks, factors impacting this behaviour, foraging preference, variations between subspecies, monitoring methods as well as the possible methods for controlling this behaviour. As concluded from this review, more work needs to be performed in order to elucidate certain aspects of foraging behaviour.  

2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Beibei Li ◽  
Chunsheng Hou ◽  
Shuai Deng ◽  
Xuefeng Zhang ◽  
Yanna Chu ◽  
...  

Chronic bee paralysis virus (CBPV) is a serious viral disease affecting adult bees. We report here the complete genome sequence of CBPV, which was isolated from a honey bee colony with the symptom of severe crawling. The genome of CBPV consists of two segments, RNA 1 and RNA 2, containing respective overlapping fragments.


2018 ◽  
Vol 62 (2) ◽  
pp. 223-232
Author(s):  
Dylan Cleary ◽  
Allen L. Szalanski ◽  
Clinton Trammel ◽  
Mary-Kate Williams ◽  
Amber Tripodi ◽  
...  

Abstract A study was conducted on the mitochondrial DNA genetic diversity of feral colonies and swarms of Apis mellifera from ten counties in Utah by sequencing the intergenic region of the cytochrome oxidase (COI-COII) gene region. A total of 20 haplotypes were found from 174 honey bee colony samples collected from 2008 to 2017. Samples belonged to the A (African) (48%); C (Eastern Europe) (43%); M (Western Europe) (4%); and O (Oriental) lineages (5%). Ten African A lineage haplotypes were observed with two unique to Utah among A lineage haplotypes recorded in the US. Haplotypes belonging to the A lineage were observed from six Utah counties located in the southern portion of the State, from elevations as high as 1357 m. All five C lineage haplotypes that were found have been observed from queen breeders in the US. Three haplotypes of the M lineage (n=7) and two of the O lineage (n=9) were also observed. This study provides evidence that honey bees of African descent are both common and diverse in wild populations of honey bees in southern Utah. The high levels of genetic diversity of A lineage honey bee colonies in Utah provide evidence that the lineage may have been established in Utah before the introduction of A lineage honey bees from Brazil to Texas in 1990.


2015 ◽  
Vol 59 (2) ◽  
pp. 63-72 ◽  
Author(s):  
Lanting Ma ◽  
Ying Wang ◽  
Xiaobo Hang ◽  
Hongfang Wang ◽  
Weiren Yang ◽  
...  

AbstractAlpha-linolenic acid (ALA), which is an n-3 polyunsaturated fatty acid (PUFA), influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A), 2 (group B), 4 (group C), 6 (group D), 8 (group E), and 10% (group F). In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05). The workers’ midgut Lipase (LPS) activity of group C was significantly lower than that of the other groups (P<0.01). The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05). However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01). These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Olvija Komasilova ◽  
Vitalijs Komasilovs ◽  
Armands Kviesis ◽  
Aleksejs Zacepins

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Thomas D. Seeley

Thomas Seeley's research has focused on analyzing the collective intelligence and natural lives of honey bees. This account describes how the author encountered honey bees as a boy and became a beekeeper; how he switched his career path from medicine to biology to study the behavior and social life of honey bees; and how he focuses on understanding how a honey bee colony functions when it lives in the wild, rather than in a beekeeper's hive. He has shown how a honey bee colony works as a single decision-making unit to adaptively allocate its foragers among flower patches and to choose its nesting site in a hollow tree. These findings buttress the view that, in some social insect species, the colony is a group-level vehicle of gene survival. Beyond his research, he has written three books to synthesize these findings for biologists and share these discoveries with beekeepers. Expected final online publication date for the Annual Review of Entomology, Volume 67 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2018 ◽  
Vol 84 (13) ◽  
Author(s):  
Kasie Raymann ◽  
Erick V. S. Motta ◽  
Catherine Girard ◽  
Ian M. Riddington ◽  
Jordan A. Dinser ◽  
...  

ABSTRACT Accumulating evidence suggests that pesticides have played a role in the increased rate of honey bee colony loss. One of the most commonly used pesticides in the United States is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is on the insect nervous system, it has also been shown to cause changes in insects' digestive physiology and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. Consistent with other studies, we show that imidacloprid exposure results in an elevated mortality of honey bees in the hive and increases the susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid within in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome. IMPORTANCE Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. We found that the exposure to imidacloprid resulted in an elevated mortality of honey bees and increased the susceptibility to infection by opportunistic pathogens. However, we did not find evidence that imidacloprid affects the gut microbiome of honey bees. We found some evidence that imidacloprid can be metabolized in the bee gut environment in vitro , but because it is quickly eliminated from the bee, it is unlikely that this metabolism occurs in nature. Thus, imidacloprid causes increased mortality in honey bees, but this does not appear to be linked to the microbiome.


2017 ◽  
Vol 7 (1) ◽  
pp. 25 ◽  
Author(s):  
J. J. M. Van der Steen ◽  
M. Bergsma-Vlami ◽  
M. Wenneker

In this study we show that honey bee colonies placed in a greenhouse for pollination of strawberry can simultaneously be used to indicate the presence of the plant pathogenic bacterium Erwinia pyrifoliae. This was demonstrated by using two methods of qualitative sacrificial and non-sacrificial bio sampling of the honey bee colony. A novel method for non-sacrificial subsampling, named the Beehold device, was applied. Applying the Beehold device did not disturb or affect negatively the honey bee colony. The study demonstrated that the integration of pollination service and bio-sampling functioned. In the sacrificially derived honey bee subsamples, E. pyrifoliae was detected prior to any visible infection in the plant; however, E. pyrifoliae was detected via non-sacrificial sampling at the same time as plant infection was first observed. The Beehold device is a practical tool for monitoring plant pathogens via forager bees during flowering until fruit onset, but is not as sensitive as directly sampling honey bees.


2002 ◽  
Vol 89 (10) ◽  
pp. 479-482 ◽  
Author(s):  
Madeleine Beekman ◽  
Gregory Good ◽  
Mike Allsopp ◽  
Sarah Radloff ◽  
Chris Pirk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document