scholarly journals Leishmania Infection Induces Macrophage Vascular Endothelial Growth Factor A Production in an ARNT/HIF-Dependent Manner

2019 ◽  
Vol 87 (11) ◽  
Author(s):  
Tiffany Weinkopff ◽  
Hayden Roys ◽  
Anne Bowlin ◽  
Phillip Scott

ABSTRACT Cutaneous leishmaniasis is characterized by vascular remodeling. Following infection with Leishmania parasites, the vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway mediates lymphangiogenesis, which is critical for lesion resolution. Therefore, we investigated the cellular and molecular mediators involved in VEGF-A/VEGFR-2 signaling using a murine model of infection. We found that macrophages are the predominant cell type expressing VEGF-A during Leishmania major infection. Given that Leishmania parasites activate hypoxia-inducible factor 1α (HIF-1α) and this transcription factor can drive VEGF-A expression, we analyzed the expression of HIF-1α during infection. We showed that macrophages were also the major cell type expressing HIF-1α during infection and that infection-induced VEGF-A production is mediated by ARNT/HIF activation. Furthermore, mice deficient in myeloid ARNT/HIF signaling exhibited larger lesions without differences in parasite numbers. These data show that L. major infection induces macrophage VEGF-A production in an ARNT/HIF-dependent manner and suggest that ARNT/HIF signaling may limit inflammation by promoting VEGF-A production and, thus, lymphangiogenesis during infection.

2006 ◽  
Vol 188 (1) ◽  
pp. 91-99 ◽  
Author(s):  
M A J Hervé ◽  
G Meduri ◽  
F G Petit ◽  
T S Domet ◽  
G Lazennec ◽  
...  

The induction of vascular endothelial growth factor (VEGF) expression by 17β-estradiol (E2) in many target cells, including epithelial cells, fibroblasts and smooth muscle cells, suggests a role for this hormone in the modulation of angiogenesis and vascular permeability. We have already described a cyclic increase in Flk-1/KDR-expressing capillaries in the human endometrium during the proliferative and mid-secretory phases, strongly suggestive of an E2 effect on Flk-1/KDR expression in the endometrial capillaries. However, it is unclear whether these processes are due to a direct effect of E2 on endothelial cells. Using immunohistochemistry, we report an increase in Flk-1/KDR expression in endometrial capillaries of ovariectomized mice treated with E2, or both E2 and progesterone. This process is mediated through estrogen receptor (ER) activation. In vitro experiments using quantitative RT-PCR analysis demonstrate that Flk-1/KDR expression was not regulated by E2 in human endothelial cells from the microcirculation (HMEC-1) or macrocirculation (HUVEC), even in endothelial cells overexpressing ERα or ERβ after ER-mediated adenovirus infection. In contrast, Flk-1/KDR expression was up-regulated by VEGF itself, in a time- and dose-dependent manner, with the maximal response at 10 ng/ml. Thus, we suggest that E2 up-regulates Flk-1/KDR expression in vivo in endothelial cells mainly through the modulation of VEGF by a paracrine mechanism. It is currently unknown whether or not the endothelial origin might account for differences in the E2-modulation of VEGF receptor expression, particularly in relation to the vascular bed of sex steroid-responsive tissues.


2004 ◽  
Vol 286 (3) ◽  
pp. L539-L545 ◽  
Author(s):  
Altaf S. Kazi ◽  
Shidan Lotfi ◽  
Elena A. Goncharova ◽  
Omar Tliba ◽  
Yassine Amrani ◽  
...  

In severe asthma, cytokines and growth factors contribute to the proliferation of smooth muscle cells and blood vessels, and to the increased extracellular matrix deposition that constitutes the process of airway remodeling. Vascular endothelial growth factor (VEGF), which regulates vascular permeability and angiogenesis, also modulates the function of nonendothelial cell types. In this study, we demonstrate that VEGF induces fibronectin secretion by human airway smooth muscle (ASM) cells. In addition, stimulation of ASM with VEGF activates ERK, but not p38MAPK, and fibronectin secretion is ERK dependent. Both ERK activation and fibronectin secretion appear to be mediated through the VEGF receptor flt-1, as evidenced by the effects of the flt-1-specific ligand placenta growth factor. Finally, we demonstrate that ASM cells constitutively secrete VEGF, which is increased in response to PDGF, transforming growth factor-β, IL-1β, and PGE2. We conclude that ASM-derived VEGF, through modulation of the extracellular matrix, may play an important role in airway remodeling seen in asthma.


2001 ◽  
Vol 21 (12) ◽  
pp. 3995-4004 ◽  
Author(s):  
Erik Laughner ◽  
Panthea Taghavi ◽  
Kelly Chiles ◽  
Patrick C. Mahon ◽  
Gregg L. Semenza

ABSTRACT Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator composed of HIF-1α and HIF-1β subunits. Several dozen HIF-1 targets are known, including the gene encoding vascular endothelial growth factor (VEGF). Under hypoxic conditions, HIF-1α expression increases as a result of decreased ubiquitination and degradation. The tumor suppressors VHL (von Hippel-Lindau protein) and p53 target HIF-1α for ubiquitination such that their inactivation in tumor cells increases the half-life of HIF-1α. Increased phosphatidylinositol 3-kinase (PI3K) and AKT or decreased PTEN activity in prostate cancer cells also increases HIF-1α expression by an undefined mechanism. In breast cancer, increased activity of the HER2 (also known as neu) receptor tyrosine kinase is associated with increased tumor grade, chemotherapy resistance, and decreased patient survival. HER2 has also been implicated as an inducer of VEGF expression. Here we demonstrate that HER2 signaling induced by overexpression in mouse 3T3 cells or heregulin stimulation of human MCF-7 breast cancer cells results in increased HIF-1α protein and VEGF mRNA expression that is dependent upon activity of PI3K, AKT (also known as protein kinase B), and the downstream kinase FRAP (FKBP-rapamycin-associated protein). In contrast to other inducers of HIF-1 expression, heregulin stimulation does not affect the half-life of HIF-1α but instead stimulates HIF-1α synthesis in a rapamycin-dependent manner. The 5′-untranslated region of HIF-1α mRNA directs heregulin-inducible expression of a heterologous protein. These data provide a molecular basis for VEGF induction and tumor angiogenesis by heregulin-HER2 signaling and establish a novel mechanism for the regulation of HIF-1α expression.


Blood ◽  
2000 ◽  
Vol 95 (6) ◽  
pp. 1979-1987 ◽  
Author(s):  
Victoria L. Bautch ◽  
Sambra D. Redick ◽  
Aaron Scalia ◽  
Marco Harmaty ◽  
Peter Carmeliet ◽  
...  

Abstract Vascular endothelial growth factor (VEGF) signaling is required for both differentiation and proliferation of vascular endothelium. Analysis of differentiated embryonic stem cells with one or both VEGF-A alleles deleted showed that both the differentiation and the expansion of endothelial cells are blocked during vasculogenesis. Blood island formation was reduced by half in hemizygous mutant VEGF cultures and by 10-fold in homozygous mutant VEGF cultures. Homozygous mutant cultures could be partially rescued by the addition of exogenous VEGF. RNA levels for the endothelial adhesion receptors ICAM-2 and PECAM were reduced in homozygous mutant cultures, but ICAM-2 RNA levels decreased substantially, whereas PECAM RNA levels remained at hemizygous levels. The quantitative data correlated with the antibody staining patterns because cells that were not organized into vessels expressed PECAM but not ICAM-2. These PECAM+ cell clumps accumulated in mutant cultures as vessel density decreased, suggesting that they were endothelial cell precursors blocked from maturation. A subset of PECAM+ cells in clumps expressed stage-specific embryonic antigen-1 (SSEA-1), and all were ICAM-2(−) and CD34(−), whereas vascular endothelial cells incorporated into vessels were PECAM(+), ICAM-2(+), CD34(+), and SSEA-1(−). Analysis of flk-1 expression indicated that a subset of vascular precursor cells coexpressed PECAM and flk-1. These data suggest that VEGF signaling acts in a dose-dependent manner to affect both a specific differentiation step and the subsequent expansion of endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document