scholarly journals Platelet Activation and Biofilm Formation by Aerococcus urinae, an Endocarditis-Causing Pathogen

2010 ◽  
Vol 78 (10) ◽  
pp. 4268-4275 ◽  
Author(s):  
Oonagh Shannon ◽  
Matthias Mörgelin ◽  
Magnus Rasmussen

ABSTRACT The Gram-positive bacterium Aerococcus urinae can cause infectious endocarditis (IE) in older persons. Biofilm formation and platelet aggregation are believed to contribute to bacterial virulence in IE. Five A. urinae isolates from human blood were shown to form biofilms in vitro, and biofilm formation was enhanced by the presence of human plasma. Four of the A. urinae isolates caused platelet aggregation in platelet-rich plasma from healthy donors. The Au3 isolate, which induced platelet aggregation in all donors, also activated platelets, as determined by flow cytometry. Platelet aggregation was dependent on bacterial protein structures and on platelet activation since it was sensitive to both trypsin and prostaglandin E1. Plasma proteins at the bacterial surface were needed for platelet aggregation; and roles of the complement system, fibrinogen, and immunoglobulin G were demonstrated. Complement-depleted serum was unable to support platelet aggregation by Au3 and complement blockade using compstatin-inhibited platelet activation. Platelet activation by Au3 was inhibited by blocking of the platelet fibrinogen receptor, and this isolate was also shown to bind to radiolabeled fibrinogen. Removal of IgG from platelet-rich plasma by a specific protease inhibited the platelet aggregation induced by A. urinae, and blockade of the platelet FcRγIIa hindered platelet activation induced by Au3. Convalescent-phase serum from a patient with A. urinae IE transferred the ability of the bacterium to aggregate platelets in an otherwise nonresponsive donor. Our results show that A. urinae exhibits virulence strategies of importance for IE.

1985 ◽  
Vol 53 (03) ◽  
pp. 337-342 ◽  
Author(s):  
S Krishnamurthi ◽  
V V Kakkar

SummaryThe effect of pyridoxal 5’-phosphate (PALP) and trifluoperazine (TFPZ), the calmodulin antagonist, on in vitro platelet adhesion to collagen and collagen-induced platelet activation was studied using platelet-rich-plasma (PRP) or washed platelets (WPL). Platelet aggregation and [14C]-5HT release induced by “threshold” or low concentrations of collagen (0.6 μg/ ml) in PRP were completely abolished by PALP (24 mM), TFPZ (250 μM) as well as indomethacin (10 μM). At higher concentrations of collagen (10–15 μg/ml) in PRP and WPL, the use of stirred and unstirred platelets treated with collagen enabled a distinction to be made between aggregation and adhesion- mediated release reaction. Platelet aggregation and the aggregation-mediated release reaction induced by these concentrations of collagen in stirred platelets were completely abolished by PALP, TFPZ and indomethacin although neither adhesion to collagen nor the adhesion-mediated release reaction of unstirred platelets was significantly affected by these inhibitors. Interestingly, both adhesion and the adhesion-mediated release reaction were abolished by concentrations of PALP 10–40 fold higher than those required to abolish aggregation. Collagen-induced platelet aggregation, but not platelet adhesion, was inhibited in resuspended platelets pretreated with PALP and NaBH4 indicating a separation in the membrane sites involved in aggregation and adhesion. The results further emphasize the distinction between adhesion and aggregation-mediated events with regards to collagen with the latter being more susceptible to inhibition by antiplatelet agents such as PALP and TFPZ.


1987 ◽  
Author(s):  
P Hadvary ◽  
H R Baumgartner

Platelet activating factor (PAF) is a very potent excitatory agonist of blood platelets but the physiological importance of this mediator in platelet thrombus formation is not known. We investigated the effect of two chemically unrelated selective inhibitors of PAF-induced platelet aggregation on thrombogenesis induced by rabbit aorta subendothelium (SE) using an ex vivo perfusion system.Ro 19-3704 is a highly potent inhibitor structurally related to PAF. This compound inhibits PAF-induced aggregation of rabbit platelets in platelet rich plasma in vitro competitively. Against 4 nM PAF, a concentration resulting in submaximal platelet aggre-gregation velocity, the IC50 was 70 nM. Inhibition was highly selective for PAF-induced aggregation, since aggregation induced by collagen (HORM, 5 yg/ml), ADP (1 yM) or thrombin (0.4 U/ml) was not inhibited even at a concentration as high as 10 yM. Bro-tizolam, a triazolobenzodiazepine reported to be a selective inhibitor of PAF-induced platelet activation, had in our system an IC50 of 200 nM. The selective benzodiazepine antagonist Ro 151788 was without effect on inhibition of PAF-induced platelet activation by brotizolam.Ro 19-3704 was given intravenously to rabbits as a bolus of 0.2 mg/kg followed by constant infusion of 0.02 mg/kg/min. This dosage provoked ex vivo a constant right shift ratio of the dose response curve for PAF-induced aggregation (RSR[PAF]) by a factor of 25 to 35. Brotizolam was given orally at a dose of 100 mg/ kg together with 300 mg/kg of Ro 15-1788 (to antagonize the central effects) 90 minutes before starting the perfusion experiment, resulting in a RSR[PAF] of 35 to 135. ADP induced platelet aggregation was not impaired by either compound. SE was exposed to the non-anticoagulated blood withdrawn from the carotid artery for 3 min at 2600 s-1 and for 20 min at 200 s-1 shear rate. Quantitative morphometric evaluation showed that SE coverage by platelets and by fibrin, thrombus area and thrombus height were all unchanged by the PAF antagonists at low and at high shear rates despite a very substantial inhibition of PAF-induced platelet aggregation. Therefore a major role of PAF in SE-induced thrombogenesis seems unlikely.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3905-3905
Author(s):  
Florian Langer ◽  
Francis A. Ayuk ◽  
Ali Amirkhosravi ◽  
Brigitte Spath ◽  
Todd Meyer ◽  
...  

Abstract We have previously shown that polyclonal rabbit ATG from Fresenius (ATG-F) can induce non-overt DIC in patients undergoing hematopoietic stem cell transplantation (HSCT) [Weber et al. 2003]. The compensated state of the coagulopathy suggested that the severe drop in platelet counts (>60%) observed in patients with normal pretreatment levels was not solely due to thrombin generation and platelet consumption. We thus further investigated the mechanisms of ATG-F-induced thrombocytopenia, hypothesizing that ATG-F had direct platelet-stimulating activity. Using an indirect flow cytometric binding assay we found that, compared to control IgG, ATG-F dose-dependently (1–100 μg/ml) bound to the surface of resting and TRAP-activated platelets, showing an up to 50fold increase in MFI at 50–100 μg/ml. In a washed platelet system, in which baseline positivity for CD62P was generally <15%, ATG-F alone had no effect on platelet aggregation. However, when platelets were primed with low concentrations of ADP (1–2 μM) or epinephrine (0.5 μM), ATG-F induced strong and stable aggregation of up to 80–100% in a dose-dependent manner (25–100 μg/ml), whereas control IgG did not. The priming effect of ADP was dependent on both P2Y1 and P2Y12 as evidenced by respective ADP receptor antagonists. Preincubation of platelets with inhibitory CD32 mAb completely abolished ATG-F-induced platelet aggregation, suggesting that clustering of, and signalling through, FcγRIIA was crucial for this platelet response. Similarly, ATG-F-derived F(ab′)2 had no effect on ADP-triggered platelet aggregation. Furthermore, preliminary studies indicated that responsiveness of platelet donors to ATG-F was associated with the FcγRIIA-R/R131 polymorphism, which has previously been shown to confer increased in vitro platelet responsiveness to heparin/PF4 antibodies from patients with HIT. In a 14C-serotonin release assay, in which prolonged incubation at 370C under shaking conditions increases baseline platelet activation and ensures constant platelet-platelet contacts, ATG-F (100 μg/ml), but not control IgG, induced strong FcγRIIA-dependent dense-granule release of up to 80%. In contrast, using diluted platelet-rich plasma under static conditions, ATG-F had only minor effects on platelet activation, increasing CD62P+ platelets from 2±1 to 15±5% (n=5). In a cohort of 16 consecutive HSCT patients receiving ATG-F, two patients were identified with normal pretreatment platelet counts and soluble CD62P (sCD62P) plasma levels of >51 ng/ml (mean+2SD of 23 controls). In these patients, an ATG-F-induced drop in platelet count to 38 and 19% of baseline was associated with a 1.7 and 2.2fold increase in sCD62P, respectively, indicating further platelet activation. In summary, strong binding of ATG-F to resting platelets may accelerate their clearance by the reticulo-endothelial system, thus contributing to the pathophysiology of thrombocytopenia. While ATG-F alone had negligible effects on resting platelets, it significantly enhanced activation of prestimulated platelets. Patients with normal-to-high platelet counts and evidence of in vivo platelet activation may especially be prone to this potentially hazardous side effect.


1981 ◽  
Author(s):  
H A Culliver ◽  
N G Ardlie

The lowest concentrations at which epinephrine and vasopressin have been reported to interact positively in causing platelet aggregation in vitro are at least two orders of magnitude greater than the physiological concentrations of these hormones in blood. The aim of this study was to examine the interaction between several agonists of human platelet aggregation. The aggregating agents used were adenosine diphosphate (ADP), epinephrine, norepinephrine, 5-hydroxytryptamine and vasopressin. Platelet-rich plasma (PRP) was prepared from blood anticoagulated with minimal concentrations of heparin in an attempt to more closely reflect the in vivo situation.Aggregation caused by ADP was potentiated by epinephrine at a concentration exceeding the level obtained in circulating blood. When a third agonist (vasopressin) was used in combination with ADP and epinephrine, aggregation was enhanced at concentrations of vasopressin and epinephrine obtained in blood. When used as a fourth agonist norepinephrine and 5-hydroxytryptamine potentiated aggregation at physiological concentrations. The response to multiple agonists was greater in heparinized PRP than citrated PRP. Hirudin decreased the extent of aggregation in heparinized PRP caused by multiple agonists suggesting that thrombin may be involved.Since the concentrations of combined agonists required to induce in vitro platelet aggregation can be obtained in circulating blood these findings may explain why platelet activation occurs in certain pathological states.


1998 ◽  
Vol 80 (12) ◽  
pp. 989-993 ◽  
Author(s):  
Koon-Hou Mak ◽  
Linda Brooks ◽  
Eric Topol ◽  
Kandice Kottke-Marchant

SummaryHeparin-induced thrombocytopenia (HIT) is an important complication following administration of heparin. Platelet activation and aggregation induced by heparin/platelet factor 4/immunoglobulin complexes are thought to be the underlying mechanism for this condition, so it was hypothesized that abciximab (a humanized murine monoclonal antibody directed against the glycoprotein IIb/IIIa receptor) would prevent heparin-induced platelet aggregation and activation in plasma from patients with HIT. Platelet aggregation was tested in vitro with platelet-poor plasma (obtained from 23 patients with HIT), platelet-rich plasma (from normal donors with known reactivity), heparin (0.5 U/ml), and ascending doses of abciximab (0.07-0.56 μg/ml). The ability of abciximab to prevent platelet activation was also evaluated using flow cytometry (P selectin expression, mepacrine release, microparticle formation) and platelet factor 4 immunoassay. In vitro, abciximab inhibited heparin-induced platelet aggregation in a dose-dependent fashion (IC50 0.103 μg/ml) and inhibited microparticle formation, the expression of P-selectin, release of mepacrine and platelet factor 4. These findings suggest that abciximab may be useful in treatment of patients with HIT and warrants further clinical evaluation.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


1996 ◽  
Vol 76 (05) ◽  
pp. 774-779 ◽  
Author(s):  
John T Brandt ◽  
Carmen J Julius ◽  
Jeanne M Osborne ◽  
Clark L Anderson

SummaryImmune-mediated platelet activation is emerging as an important pathogenic mechanism of thrombosis. In vitro studies have suggested two distinct pathways for immune-mediated platelet activation; one involving clustering of platelet FcyRIIa, the other involving platelet-associated complement activation. HLA-related antibodies have been shown to cause platelet aggregation, but the mechanism has not been clarified. We evaluated the mechanism of platelet aggregation induced by HLA-related antibodies from nine patients. Antibody to platelet FcyRIIa failed to block platelet aggregation with 8/9 samples, indicating that engagement of platelet FcyRIIa is not necessary for the platelet aggregation induced by HLA-related antibodies. In contrast, platelet aggregation was blocked by antibodies to human C8 (5/7) or C9 (7/7). F(ab’)2 fragments of patient IgG failed to induce platelet activation although they bound to HLA antigen on platelets. Intact patient IgG failed to aggregate washed platelets unless aged serum was added. The activating IgG could be adsorbed by incubation with lymphocytes and eluted from the lymphocytes. These results indicate that complement activation is involved in the aggregation response to HLA-related antibodies. This is the first demonstration of complement-mediated platelet aggregation by clinical samples. Five of the patients developed thrombocytopenia in relationship to blood transfusion and two patients developed acute thromboembolic disease, suggesting that these antibodies and the complement-dependent pathway of platelet aggregation may be of clinical significance.


1992 ◽  
Vol 67 (01) ◽  
pp. 126-130 ◽  
Author(s):  
Olivier Spertini ◽  
Jacques Hauert ◽  
Fedor Bachmann

SummaryPlatelet function defects observed in chronic alcoholics are not wholly explained by the inhibitory action of ethanol on platelet aggregation; they are not completely reproduced either in vivo by short-term ethanol perfusion into volunteers or in vitro by the addition of ethanol to platelet-rich plasma. As acetaldehyde (AcH) binds to many proteins and impairs cellular activities, we investigated the effect of this early degradation product of ethanol on platelets. AcH formed adducts with human platelets at neutral pH at 37° C which were stable to extensive washing, trichloracetic acid hydrolysis and heating at 100° C, and were not reduced by sodium borohydride. The amount of platelet adducts formed was a function of the incubation time and of the concentration of AcH in the reaction medium. At low AcH concentrations (<0.2 mM), platelet bound AcH was directly proportional to the concentration of AcH in the reaction medium. At higher concentrations (≥0.2 mM), AcH uptake by platelets tended to reach a plateau. The amount of adducts was also proportional to the number of exposures of platelets to pulses of 20 pM AcH.AcH adducts formation severely impaired platelet aggregation and shape change induced by ADP, collagen and thrombin. A positive correlation was established between platelet-bound AcH and inhibition of aggregation.SDS-PAGE analysis of AcH adducts at neutral pH demonstrated the binding of [14C]acetaldehyde to many platelet proteins. AcH adduct formation with membrane glycoproteins, cytoskeleton and enzymes might interfere with several steps of platelet activation and impair platelet aggregation.This in vitro study shows that AcH has a major inhibitory action on platelet aggregation and may account for the prolonged ex vivo inhibition of aggregation observed in chronic alcoholics even in the absence of alcoholemia.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


Sign in / Sign up

Export Citation Format

Share Document