scholarly journals Construction and Evaluation of a Novel Recombinant T Cell Epitope-Based Vaccine against Coccidioidomycosis

2012 ◽  
Vol 80 (11) ◽  
pp. 3960-3974 ◽  
Author(s):  
Brady J. Hurtgen ◽  
Chiung-Yu Hung ◽  
Gary R. Ostroff ◽  
Stuart M. Levitz ◽  
Garry T. Cole

ABSTRACTClinical and animal studies of coccidioidomycosis have demonstrated that activated CD4+T lymphocytes are essential for protection against this fungal respiratory disease. We previously reported a vaccine againstCoccidioidesinfection which contained three recombinant CD4+T cell-reactive proteins and induced a robust, protective immune response in mice. Due to the anticipated high cost of production and clinical assessment of this multivalent vaccine, we generated a single protein which contained immunodominant T cell epitopes of the three polypeptides. Epitopes were initially identified by computational prediction of their ability to bind promiscuously to human major histocompatibility complex class II (MHC II) molecules. Cellular immunoassays confirmed the immunogenicity of the synthesized epitope peptides, whilein vitrobinding assays revealed a range of peptide affinity for MHC II. A DNA construct was synthesized for bacterial expression of a recombinant protein vaccine which contained five epitopes with the highest affinity for human MHC II, each fused with leader and spacer peptides proposed to optimize epitope processing and presentation to T cell receptors. Recall assays of immune T lymphocytes obtained from human MHC II-expressing HLA-DR4 transgenic mice confirmed that 4 of the 5 epitope peptides were processed. Mice immunized with the epitope-based vaccine admixed with a synthetic oligodeoxynucleotide adjuvant or loaded into yeast glucan particles and then challenged intranasally withCoccidioidesshowed early lung infiltration of activated T helper-1 (Th1), Th2, and Th17 cells, elevated gamma interferon (IFN-γ) and interleukin (IL)-17 production, significant reduction of fungal burden, and prolongation of survival compared to nonvaccinated mice. This is the first report of an epitope-based vaccine against coccidioidomycosis.

2020 ◽  
Author(s):  
Dr. Seema Mishra

Immunoinformatics approach has been used to identify potential T cell epitopes from structural and non-structural proteins for immunotherapy against novel coronavirus 2019-nCoV across populations Two different prediction algorithms, NetCTLpan and Pickpocket were used to generate consensus epitopes against HLA supertypes. All of the 57 epitopes identified had no similarity/identity with the human proteome thus preventing crossreactivity. Many of these epitopes formed a tight cluster around consensus sequences <p>MGYINVFAFPFTIYSLLLC and KVSIWNLDYIINLI across proteins and alleles. These should be urgently tested in <i>in-vitro</i> MHC binding and T cell assays before being tried as vaccines to further prevent pandemic due to this lethal coronavirus.<br></p>


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Bruno Garulli ◽  
Giuseppina Di Mario ◽  
Ester Sciaraffia ◽  
Yoshihiro Kawaoka ◽  
Maria R. Castrucci

Recombinant influenza viruses that bear the single immunodominant CD8+ T cell epitopeOVA257−264or the CD4+ T cell epitopeOVA323−339of the model antigen ovalbumin (OVA) have been useful tools in immunology. Here, we generated a recombinant influenza virus,WSN-OVAI/II, that bears both OVA-specific CD8+ and CD4+ epitopes on its hemagglutinin molecule. Live and heat-inactivatedWSN-OVAI/IIviruses were efficiently presented by dendritic cellsin vitroto OT-I TCR transgenic CD8+ T cells and OT-II TCR transgenic CD4+ T cells.In vivo,WSN-OVAI/IIvirus was attenuated in virulence, highly immunogenic, and protected mice from B16-OVA tumor challenge in a prophylactic model of vaccination. Thus,WSN-OVAI/IIvirus represents an additional tool, along with OVA TCR transgenic mice, for further studies on T cell responses and may be of value in vaccine design.


2020 ◽  
Author(s):  
Mohammad Mostafa Pourseif ◽  
Sepideh Parvizpour ◽  
Behzad Jafari ◽  
Jaber Dehghani ◽  
Behrooz Naghili ◽  
...  

Abstract Coronavirus disease 2019 (COVID-19) is undoubtedly the most challenging pandemic in the current century with more than 253,381 deaths worldwide since its emergence in late 2019 (updated May 6th, 2020). COVID-19 is caused by a novel emerged coronavirus named as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Today, the world needs crucially to develop a prophylactic vaccine scheme for such emerged and emerging infectious pathogens. In this study, we have targeted spike (S) glycoprotein, as an important surface antigen of SARS-CoV-2, to identify its immunodominant B- and T-cell epitopes. We have conducted a multi-method B-cell epitope (BCE) prediction approach using different predictor algorithms to discover most potential BCEs. Besides, we sought among a pool of MHC class I and II-associated peptide binders provided by the IEDB server through the strict cut-off values. To design a broad-coverage vaccine, we carried out a population coverage analysis for a set of candidate T-cell epitopes and based on the HLA allele frequency in the top most-affected countries by COVID-19 (update 02 April 2020). The final determined B- and T-cell epitopes were mapped on the S glycoprotein sequence, and three potential hub regions covering the largest number of overlapping epitopes were identified for the vaccine designing (I531–N711; T717–C877; and V883–E973). Here, we have designed two domain-based constructs to be produced and delivered through the recombinant protein- and gene-based approaches, including (i) an adjuvanted domain-based protein vaccine construct (DPVC), and (ii) a self-amplifying mRNA vaccine (SAMV) construct. The safety, stability, and immunogenicity of the DPVC were validated using the integrated sequential (i.e. allergenicity, autoimmunity, and physicochemical features) and structural (i.e. molecular docking between the vaccine and human Toll-like receptors (TLRs) 4 and 5) analysis. The stability of the docked complexes was evaluated using the molecular dynamics (MD) simulations. These rigorous in silico validations supported the potential of the DPVC and SAMV to promote both innate and specific immune responses in the animal studies.


2005 ◽  
Vol 201 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Deng Tao ◽  
Giovanna Barba-Spaeth ◽  
Urvashi Rai ◽  
Victor Nussenzweig ◽  
Charles M. Rice ◽  
...  

The yellow fever vaccine 17D (17D) is safe, and after a single immunizing dose, elicits long-lasting, perhaps lifelong protective immunity. One of the major challenges facing delivery of human vaccines in underdeveloped countries is the need for multiple injections to achieve full efficacy. To examine 17D as a vector for microbial T cell epitopes, we inserted the H-2Kd–restricted CTL epitope of the circumsporozoite protein (CS) of Plasmodium yoelii between 17D nonstructural proteins NS2B and NS3. The recombinant virus, 17D-Py, was replication competent and stable in vitro and in vivo. A single subcutaneous injection of 105 PFU diminished the parasite burden in the liver by ∼70%. The high level of protection lasted between 4 and 8 wk after immunization, but a significant effect was documented even 24 wk afterwards. Thus, the immunogenicity of a foreign T cell epitope inserted into 17D mimics some of the remarkable properties of the human vaccine. Priming with 17D-Py followed by boosting with irradiated sporozoites conferred sterile immunity to 90% of the mice. This finding indicates that the immune response of vaccine-primed individuals living in endemic areas could be sustained and magnified by the bite of infected mosquitoes.


2006 ◽  
Vol 74 (1) ◽  
pp. 516-527 ◽  
Author(s):  
Eric J. Tarcha ◽  
Venkatesha Basrur ◽  
Chiung-Yu Hung ◽  
Malcolm J. Gardner ◽  
Garry T. Cole

ABSTRACT Coccidioidomycosis is a respiratory disease of humans caused by the desert soil-borne fungal pathogens Coccidioides spp. Recurrent epidemics of this mycosis in the southwestern United States have contributed significantly to escalated health care costs. Clinical and experimental studies indicate that prior symptomatic coccidioidomycosis induces immunity against subsequent infection, and activation of T cells is essential for containment of the pathogen and its clearance from host tissue. Development of a human vaccine against coccidioidomycosis has focused on recombinant T-cell-reactive antigens which elicit a durable protective immune response against pulmonary infection in mice. In this study we fractionated a protective multicomponent parasitic cell wall extract in an attempt to identify T-cell antigens. Immunoblots of electrophoretic separations of this extract identified patient seroreactive proteins which were subsequently excised from two-dimensional polyacrylamide gel electrophoresis gels, trypsin digested, and sequenced by tandem mass spectrometry. The full-length gene which encodes a dominant protein in the immunoblot was identified using established methods of bioinformatics. The gene was cloned and expressed, and the recombinant protein was shown to stimulate immune T cells in vitro. The deduced protein was predicted to contain epitopes that bind to human major histocompatibility complex class II molecules using a TEPITOPE-based algorithm. Synthetic peptides corresponding to the predicted T-cell epitopes induced gamma interferon production by immune T lymphocytes. The T-cell-reactive antigen, which is homologous to secreted fungal aspartyl proteases, protected mice against pulmonary infection with Coccidioides posadasii. We argue that this immunoproteomic/bioinformatic approach to the identification of candidate vaccines against coccidioidomycosis is both efficient and productive.


2005 ◽  
Vol 37 (11) ◽  
pp. 751-758 ◽  
Author(s):  
Guang-Fu Li ◽  
Yong Wang ◽  
Zhao-Song Zhang ◽  
Xin-Jun Wang ◽  
Min-Jun Ji ◽  
...  

AbstractThe-type cytokines produced by the stimulation of Th1-type epitopes derived from defined schistosome-associated antigens are correlated with the development of resistance to the parasite infection. Schistosoma mansoni 28 kDa glutathione-S-transferase (Sm28GST), a major detoxification enzyme, has been recognized as a vaccine candidate and a phase II clinical trial has been carried out. Sheep immunized with recombinant Schistosoma japonicum 28GST (Sj28GST) have shown immune protection against the parasite infection. In the present study, six candidate peptides (P1, P2, P3, P4, P7 and P8) from Sj28GST were predicted, using software, to be T cell epitopes, and peptides P5 and P6 were designed by extending five amino acids at the N-terminal and C-terminal of P1, respectively. The peptide 190–211 aa in Sj28GST corresponding to the Th1-type epitope (190–211 aa) identified from Sm28GST was selected and named P9. The nine candidate peptides were synthesized or produced as the fusion protein with thioredoxin in the pET32c(+)/BL21(DE3) system. Their capacity to induce a Th1-type response in vitro was measured using lymphocyte proliferation, cytokine detection experiments and flow cytometry. The results showed that P6 (73–86 aa) generated the strongest stimulation effect on T cells among the nine candidate peptides, and drove the highest level of IFN-γ and IL-2. Therefore, P6 is a functional Th1-type T cell epitope that is different from that in Sm28GST, and will be useful for the development of effective vaccines which can trigger acquired immunity against S. japonicum. Moreover, our strategy of identifying the Th1-type epitope by a combination of software prediction and experimental confirmation provides a convenient and cost-saving alternative approach to previous methods.


Author(s):  
Dr. Seema Mishra

Immunoinformatics approach has been used to identify potential T cell epitopes from structural and non-structural proteins for immunotherapy against novel coronavirus 2019-nCoV across populations Two different prediction algorithms, NetCTLpan and Pickpocket were used to generate consensus epitopes against HLA supertypes. All of the 57 epitopes identified had no similarity/identity with the human proteome thus preventing crossreactivity. Many of these epitopes formed a tight cluster around consensus sequences <p>MGYINVFAFPFTIYSLLLC and KVSIWNLDYIINLI across proteins and alleles. These should be urgently tested in <i>in-vitro</i> MHC binding and T cell assays before being tried as vaccines to further prevent pandemic due to this lethal coronavirus.<br></p>


2002 ◽  
Vol 83 (3) ◽  
pp. 551-560 ◽  
Author(s):  
Elisenda Armengol ◽  
Karl-Heinz Wiesmüller ◽  
Daniel Wienhold ◽  
Mathias Büttner ◽  
Eberhard Pfaff ◽  
...  

To identify new T-cell epitopes of classical swine fever virus (CSFV), 573 overlapping, synthetic pentadecapeptides spanning 82% of the CSFV (strain Glentorf) genome sequence were synthesized and screened. In proliferation assays, 26 peptides distributed throughout the CSFV viral protein sequences were able to induce specific T-cell responses in PBMCs from a CSFV-Glentorf-infected d/d haplotype pig. Of these 26 peptides, 18 were also recognized by PBMCs from a CSFV-Alfort/187-infected d/d haplotype pig. In further experiments, it could be shown that peptide 290 (KHKVRNEVMVHWFDD), which corresponds to amino acid residues 1446–1460 of the CSFV non-structural protein NS2–3 could induce interferon-γ secretion after secondary in vitro restimulation. The major histocompatibility complex (MHC) restriction for stimulation of T-cells by this pentadecapeptide was identified as being mainly MHC class II and partially MHC class I. In cytolytic assays, CSFV-specific cytotoxic T-lymphocytes (CTLs) were able to lyse peptide 290-loaded target cells. These findings indicate the existence of a CSFV-specific helper T-cell epitope and a CTL epitope in this peptide.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anne S. De Groot ◽  
Ankit K. Desai ◽  
Sandra Lelias ◽  
S. M. Shahjahan Miah ◽  
Frances E. Terry ◽  
...  

Infantile-onset Pompe disease (IOPD) is a glycogen storage disease caused by a deficiency of acid alpha-glucosidase (GAA). Treatment with recombinant human GAA (rhGAA, alglucosidase alfa) enzyme replacement therapy (ERT) significantly improves clinical outcomes; however, many IOPD children treated with rhGAA develop anti-drug antibodies (ADA) that render the therapy ineffective. Antibodies to rhGAA are driven by T cell responses to sequences in rhGAA that differ from the individuals’ native GAA (nGAA). The goal of this study was to develop a tool for personalized immunogenicity risk assessment (PIMA) that quantifies T cell epitopes that differ between nGAA and rhGAA using information about an individual’s native GAA gene and their HLA DR haplotype, and to use this information to predict the risk of developing ADA. Four versions of PIMA have been developed. They use EpiMatrix, a computational tool for T cell epitope identification, combined with an HLA-restricted epitope-specific scoring feature (iTEM), to assess ADA risk. One version of PIMA also integrates JanusMatrix, a Treg epitope prediction tool to identify putative immunomodulatory (regulatory) T cell epitopes in self-proteins. Using the JanusMatrix-adjusted version of PIMA in a logistic regression model with data from 48 cross-reactive immunological material (CRIM)-positive IOPD subjects, those with scores greater than 10 were 4-fold more likely to develop ADA (p&lt;0.03) than those that had scores less than 10. We also confirmed the hypothesis that some GAA epitopes are immunomodulatory. Twenty-one epitopes were tested, of which four were determined to have an immunomodulatory effect on T effector response in vitro. The implementation of PIMA V3J on a secure-access website would allow clinicians to input the individual HLA DR haplotype of their IOPD patient and the GAA pathogenic variants associated with each GAA allele to calculate the patient’s relative risk of developing ADA, enhancing clinical decision-making prior to initiating treatment with ERT. A better understanding of immunogenicity risk will allow the implementation of targeted immunomodulatory approaches in ERT-naïve settings, especially in CRIM-positive patients, which may in turn improve the overall clinical outcomes by minimizing the development of ADA. The PIMA approach may also be useful for other types of enzyme or factor replacement therapies.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 526
Author(s):  
Francesco Nicoli ◽  
Salvatore Pacifico ◽  
Eleonora Gallerani ◽  
Erika Marzola ◽  
Valentina Albanese ◽  
...  

Peptide vaccines incorporating B- and T-cell epitopes have shown promise in the context of various cancers and infections. These vaccines are relatively simple to manufacture, but more immunogenic formulations are considered a priority. We developed tetrabranched derivatives for this purpose based on a novel peptide welding technology (PWT). PWTs provide molecular scaffolds for the efficient synthesis of ultrapure peptide dendrimers, which allow the delivery of multiple ligands within a single macromolecular structure. Peptide vaccines incorporating T-cell epitopes derived from melanoma and B-cell epitopes derived from human immunodeficiency virus, synthesized using this approach, elicited primary immune responses in vitro and in vivo. Subcutaneous administration of the B-cell epitope-based vaccines also elicited more potent humoral responses than subcutaneous administration of the corresponding peptides alone. Highly immunogenic peptide epitope-based vaccines can therefore be generated quickly and easily using a novel PWT.


Sign in / Sign up

Export Citation Format

Share Document