tight cluster
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 9 (7) ◽  
pp. 1367
Author(s):  
Jule Anna Horlbog ◽  
Roger Stephan ◽  
Marc J. A. Stevens ◽  
Gudrun Overesch ◽  
Sonja Kittl ◽  
...  

Poultry feed is a leading source of Salmonella infection in poultry. In Switzerland, heat-treated feed is used to reduce Salmonella incursions into flocks in conventional poultry production. By contrast, organic feed is only treated with organic acids. In 2019, the Swiss National Reference Center for Enteropathogenic Bacteria identified the rare serovar S. Jerusalem from samples of organic soya feed. Further, in July 2020, the European Union’s Rapid Alert System for Food and Feed published a notification of the detection of S. Jerusalem in soya expeller from Italy. During 2020, seven S. Jerusalem isolates from seven different poultry productions distributed over six cantons in Switzerland were reported, providing further evidence of a possible outbreak. Using whole-genome sequencing (WGS), S. Jerusalem isolates from feed and from animals in Switzerland were further characterized and compared to S. Jerusalem from organic poultry farm environments in Italy. WGS results showed that feed isolates and isolates from Swiss and Italian poultry flocks belonged to the sequence type (ST)1028, grouped in a very tight cluster, and were closely related. This outbreak highlights the risk of spreading Salmonella by feed and emphasizes the need for a heat-treatment process for feed, also in organic poultry production.



PhytoKeys ◽  
2020 ◽  
Vol 169 ◽  
pp. 119-135
Author(s):  
Lynn J. Gillespie ◽  
Warren M. Cardinal-McTeague ◽  
Kenneth J. Wurdack

Monadelpha L.J.Gillespie & Card.-McTeag., gen. nov., is described as a new member of Euphorbiaceae tribe Plukenetieae subtribe Tragiinae, to accommodate Tragia guayanensis, a species known from western Amazonas, Venezuela and, newly reported here, from Amazonas, Brazil. The genus is unique in the subtribe for having 5-colpate pollen and staminate flowers with filaments entirely connate into an elongate, cylindrical staminal column terminated by a tight cluster of anthers. Phylogenetic analyses based on nuclear rDNA ITS and sampling 156 accessions across the diversity of Tragiinae (all 12 genera and 77 of ~195 species) also support Monadelpha as a distinct lineage that is separate from Tragia. A revised key to the genera of Tragiinae in South America and Central America is provided.



2020 ◽  
Vol 9 (29) ◽  
Author(s):  
Bidisha Chanda ◽  
Yazmín Rivera ◽  
Schyler O. Nunziata ◽  
Marco E. Galvez ◽  
Andrea Gilliard ◽  
...  

ABSTRACT The complete genome sequence of a U.S. isolate of a Tomato brown rugose fruit virus (ToBRFV) (CA18-01) was obtained through Illumina and MinION sequencing. The U.S. ToBRFV isolate shared a high nucleic acid sequence identity (>99%) with known ToBRFV isolates. Phylogenetic analysis revealed a tight cluster for ToBRFV isolates throughout the world, suggesting a short evolutionary history.



2020 ◽  
Author(s):  
Dr. Seema Mishra

Immunoinformatics approach has been used to identify potential T cell epitopes from structural and non-structural proteins for immunotherapy against novel coronavirus 2019-nCoV across populations Two different prediction algorithms, NetCTLpan and Pickpocket were used to generate consensus epitopes against HLA supertypes. All of the 57 epitopes identified had no similarity/identity with the human proteome thus preventing crossreactivity. Many of these epitopes formed a tight cluster around consensus sequences <p>MGYINVFAFPFTIYSLLLC and KVSIWNLDYIINLI across proteins and alleles. These should be urgently tested in <i>in-vitro</i> MHC binding and T cell assays before being tried as vaccines to further prevent pandemic due to this lethal coronavirus.<br></p>



Author(s):  
Dr. Seema Mishra

Immunoinformatics approach has been used to identify potential T cell epitopes from structural and non-structural proteins for immunotherapy against novel coronavirus 2019-nCoV across populations Two different prediction algorithms, NetCTLpan and Pickpocket were used to generate consensus epitopes against HLA supertypes. All of the 57 epitopes identified had no similarity/identity with the human proteome thus preventing crossreactivity. Many of these epitopes formed a tight cluster around consensus sequences <p>MGYINVFAFPFTIYSLLLC and KVSIWNLDYIINLI across proteins and alleles. These should be urgently tested in <i>in-vitro</i> MHC binding and T cell assays before being tried as vaccines to further prevent pandemic due to this lethal coronavirus.<br></p>



Author(s):  
Dr. Seema Mishra

Immunoinformatics approach has been used to identify potential T cell epitopes from structural and non-structural proteins for immunotherapy against novel coronavirus 2019-nCoV across populations Two different prediction algorithms, NetCTLpan and Pickpocket were used to generate consensus epitopes against HLA supertypes. All of the 57 epitopes identified had no similarity/identity with the human proteome thus preventing crossreactivity. Many of these epitopes formed a tight cluster around consensus sequences <p>MGYINVFAFPFTIYSLLLC and KVSIWNLDYIINLI across proteins and alleles. These should be urgently tested in <i>in-vitro</i> MHC binding and T cell assays before being tried as vaccines to further prevent pandemic due to this lethal coronavirus.<br></p>



Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1198-1202 ◽  
Author(s):  
Kuifeng Yang ◽  
Hongrui Fan ◽  
Franco Pirajno ◽  
Xiaochun Li

Abstract The Bayan Obo deposit in China is endowed with the largest rare earth element (REE) resource in the world. The mechanism resulting in this REE enrichment has been the focus of many studies. Carbonatite is known globally as the most favorable carrier of REE ores. In the Bayan Obo deposit, REE ores are hosted in dolomites (including coarse-grained and fine-grained varieties), and many carbonatite dikes (ferroan, magnesian, and calcic) have been identified. All of the dolomites and carbonatite dikes appear to be broadly coeval and possess similar geochemical characteristics. The Sm-Nd isochron age of apatite (1317 ± 140 Ma) from coarse-grained dolomite is consistent with the Th-Pb age of monazite (1321 ± 14 Ma) from a calciocarbonatite dike. The εNd(t) values and initial 87Sr/86Sr ratios at 1.3 Ga of apatite from coarse-grained dolomite show a tight cluster between −2.5 and +1.0 and between 0.70266 and 0.70293, respectively. The δ18OVSMOW values (relative to Vienna standard mean ocean water) of apatite also vary narrowly from 5.0‰ to 6.2‰. These results are consistent with primary mantle-derived carbonatite and prove a magmatic origin for the ore-hosting dolomite. Furthermore, the rim and core texture of dolomite and calcite in the magnesian and calcic carbonatite dikes shows that carbonatite at Bayan Obo has an evolutionary sequence from ferroan through magnesian to calcic in nature. There is a clear negative correlation between the iron content and REE concentration in different stages of carbonatite. Intense magmatic differentiation of carbonatite is likely the critical factor for the giant REE accumulation.



2019 ◽  
Vol 116 (33) ◽  
pp. 16603-16612 ◽  
Author(s):  
Eric B. Miller ◽  
Pengfei Zhang ◽  
Karli Ching ◽  
Edward N. Pugh ◽  
Marie E. Burns

Microglia respond to damage and microenvironmental changes within the central nervous system by morphologically transforming and migrating to the lesion, but the real-time behavior of populations of these resident immune cells and the neurons they support have seldom been observed simultaneously. Here, we have used in vivo high-resolution optical coherence tomography (OCT) and scanning laser ophthalmoscopy with and without adaptive optics to quantify the 3D distribution and dynamics of microglia in the living retina before and after local damage to photoreceptors. Following photoreceptor injury, microglia migrated both laterally and vertically through the retina over many hours, forming a tight cluster within the area of visible damage that resolved over 2 wk. In vivo OCT optophysiological assessment revealed that the photoreceptors occupying the damaged region lost all light-driven signaling during the period of microglia recruitment. Remarkably, photoreceptors recovered function to near-baseline levels after the microglia had departed the injury locus. These results demonstrate the spatiotemporal dynamics of microglia engagement and restoration of neuronal function during tissue remodeling and highlight the need for mechanistic studies that consider the temporal and structural dynamics of neuron–microglia interactions in vivo.



2018 ◽  
Vol 28 (5) ◽  
pp. 660-667 ◽  
Author(s):  
Elizabeth Conlan ◽  
Tatiana Borisova ◽  
Erick Smith ◽  
Jeffrey Williamson ◽  
Mercy Olmstead

Freeze events between January and April can result in major crop and economic losses for growers of low-chill, early-ripening varieties of blueberry (Vaccinium sp.) in Florida and Georgia. The objective of this research was to determine current responses by blueberry growers to freeze events. Blueberry growers in Florida and Georgia were surveyed about frost protection decision criteria. Growers had differing opinions on when to make the decision to frost-protect blueberry crops. Almost all (98.9%) of the respondents (n = 94) who reported using at least one method of active frost protection reported using irrigation. Farm size, as measured by blueberry acreage, did not influence decisions regarding the use of active frost protection measures. Blueberry growers, on average, reported that a loss of up to 30% to 39% of their crop could be tolerated and still produce a marketable crop. However, they may have been overly cautious at the early bud stages, with ≈40% and 55% of respondents protecting at the bud swell and tight cluster stages, respectively. Understanding the use of irrigation as a frost protection practice in the southeastern United States can aid in improving frost protection recommendations, helping growers maximize yield and saving water and money.



2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3905-3912 ◽  
Author(s):  
Lenka Krizova ◽  
Martina Maixnerova ◽  
Ondrej Sedo ◽  
Alexandr Nemec

We have studied the taxonomic position of a phenetically unique group of eight strains of the genus Acinetobacter which were isolated from soil and water samples collected in protected landscape areas in the Czech Republic. Each of the comparative sequence analyses of the 16S rRNA, gyrB and rpoB genes showed that the eight strains formed a cohesive and tight cluster (intracluster sequence identities of ≥ 99.9 %, ≥ 98.5 % and ≥ 97.7 %, respectively), which was clearly separated from all hitherto known species of the genus Acinetobacter ( ≤ 98.6 %, ≤ 84.5 % and ≤ 89.3 %, respectively). Congruent with these findings were the results of comparative sequence analysis of three additional housekeeping genes (gltA, pyrG and recA). This genotypic distinctness was mirrored by the uniqueness of the combination of a number of independent phenotypic markers including the whole-cell spectra produced by matrix-assisted laser desorption ionization time-of-flight (MALDI-ToF) MS and physiological and metabolic features. The most useful phenotypic features to differentiate the eight strains from all known species of the genus Acinetobacter were the ability to assimilate tricarballylate and the inability to grow at 35 °C or to assimilate ethanol or l-histidine. We conclude that the eight strains represent a novel environmental species for which the name Acinetobacter albensis sp. nov. is proposed. The type strain is ANC 4874T ( = CCUG 67281T = CCM 8611T).



Sign in / Sign up

Export Citation Format

Share Document