scholarly journals The Early Phagosomal Stage of Francisella tularensis Determines Optimal Phagosomal Escape and Francisella Pathogenicity Island Protein Expression

2008 ◽  
Vol 76 (12) ◽  
pp. 5488-5499 ◽  
Author(s):  
Audrey Chong ◽  
Tara D. Wehrly ◽  
Vinod Nair ◽  
Elizabeth R. Fischer ◽  
Jeffrey R. Barker ◽  
...  

ABSTRACT Francisella tularensis is an intracellular pathogen that can survive and replicate within macrophages. Following phagocytosis and transient interactions with the endocytic pathway, F. tularensis rapidly escapes from its original phagosome into the macrophage cytoplasm, where it eventually replicates. To examine the importance of the nascent phagosome for the Francisella intracellular cycle, we have characterized early trafficking events of the F. tularensis subsp. tularensis strain Schu S4 in a murine bone marrow-derived macrophage model. Here we show that early phagosomes containing Schu S4 transiently interact with early and late endosomes and become acidified before the onset of phagosomal disruption. Inhibition of endosomal acidification with the vacuolar ATPase inhibitor bafilomycin A1 or concanamycin A prior to infection significantly delayed but did not block phagosomal escape and cytosolic replication, indicating that maturation of the early Francisella-containing phagosome (FCP) is important for optimal phagosomal escape and subsequent intracellular growth. Further, Francisella pathogenicity island (FPI) protein expression was induced during early intracellular trafficking events. Although inhibition of endosomal acidification mimicked the early phagosomal escape defects caused by mutation of the FPI-encoded IglCD proteins, it did not inhibit the intracellular induction of FPI proteins, demonstrating that this response is independent of phagosomal pH. Altogether, these results demonstrate that early phagosomal maturation is required for optimal phagosomal escape and that the early FCP provides cues other than intravacuolar pH that determine intracellular induction of FPI proteins.

1995 ◽  
Vol 6 (5) ◽  
pp. 509-524 ◽  
Author(s):  
E F Grady ◽  
A M Garland ◽  
P D Gamp ◽  
M Lovett ◽  
D G Payan ◽  
...  

Many of the actions of the neuropeptide substance P (SP) that are mediated by the neurokinin 1 receptor (NK1-R) desensitize and resensitize, which may be associated with NK1-R endocytosis and recycling. We delineated this endocytic pathway in transfected cells by confocal microscopy using cyanine 3-SP and NK1-R antibodies. SP and the NK1-R were internalized into the same clathrin immunoreactive vesicles, and then sorted into different compartments. The NK1-R was colocalized with a marker of early endosomes, but not with markers of late endosomes or lysosomes. We quantified the NK1-R at the cell surface by incubating cells with an antibody to an extracellular epitope. After exposure to SP, there was a loss and subsequent recovery of surface NK1-R. The loss was prevented by hypertonic sucrose and potassium depletion, inhibitors of clathrin-mediated endocytosis. Recovery was independent of new protein synthesis because it was unaffected by cycloheximide. Recovery required endosomal acidification because it was prevented by an H(+)-ATPase inhibitor. The fate of internalized 125I-SP was examined by chromatography. SP was intact at the cell surface and in early endosomes, but slowly degraded in perinuclear vesicles. We conclude that SP induces clathrin-dependent internalization of the NK1-R. The SP/NK1-R complex dissociates in acidified endosomes. SP is degraded, whereas the NK1-R recycles to the cell surface.


Microbiology ◽  
2010 ◽  
Vol 156 (2) ◽  
pp. 327-339 ◽  
Author(s):  
Jessica A. Edwards ◽  
Dedeke Rockx-Brouwer ◽  
Vinod Nair ◽  
Jean Celli

The intracellular bacterium Francisella tularensis ensures its survival and proliferation within phagocytes of the infected host through phagosomal escape and cytosolic replication, to cause the disease tularemia. The cytokine interferon-γ (IFN-γ) is important in controlling primary infections in vivo, and in vitro intracellular proliferation of Francisella in macrophages, but its actual effects on the intracellular cycle of the bacterium are ambiguous. Here, we have performed an extensive analysis of the intracellular fate of the virulent F. tularensis subsp. tularensis strain Schu S4 in primary IFN-γ-activated murine and human macrophages to understand how this cytokine controls Francisella proliferation. In both murine bone marrow-derived macrophages (muBMMs) and human blood monocyte-derived macrophages (MDMs), IFN-γ controlled bacterial proliferation. Schu S4 growth inhibition was not due to a defect in phagosomal escape, since bacteria disrupted their phagosomes with indistinguishable kinetics in both muBMMs and MDMs, regardless of their activation state. Rather, IFN-γ activation restricted cytosolic replication of Schu S4 in a manner independent of reactive oxygen or nitrogen species. Hence, IFN-γ induces phagocyte NADPH oxidase Phox- and inducible nitric oxide synthase (iNOS)-independent cytosolic effector mechanisms that restrict growth of virulent Francisella in macrophages.


2012 ◽  
Vol 81 (3) ◽  
pp. 850-861 ◽  
Author(s):  
Matthew E. Long ◽  
Stephen R. Lindemann ◽  
Jed A. Rasmussen ◽  
Bradley D. Jones ◽  
Lee-Ann H. Allen

ABSTRACTFrancisella tularensisis a facultative intracellular bacterial pathogen and the causative agent of tularemia. After infection of macrophages, the organism escapes from its phagosome and replicates to high density in the cytosol, but the bacterial factors required for these aspects of virulence are incompletely defined. Here, we describe the isolation and characterization ofFrancisella tularensissubsp.tularensisstrain Schu S4 mutants that lack functionaliglI,iglJ, orpdpC, three genes of theFrancisellapathogenicity island. Our data demonstrate that these mutants were defective for replication in primary human monocyte-derived macrophages and murine J774 cells yet exhibited two distinct phenotypes. TheiglIandiglJmutants were similar to one another, exhibited profound defects in phagosome escape and intracellular growth, and appeared to be trapped in cathepsin D-positive phagolysosomes. Conversely, thepdpCmutant avoided trafficking to lysosomes, phagosome escape was diminished but not ablated, and these organisms replicated in a small subset of infected macrophages. The phenotype of each mutant strain was reversed bytranscomplementation.In vivovirulence was assessed by intranasal infection of BALB/c mice. The mutants appeared avirulent, as all mice survived infection with 108CFUiglJ-orpdpC-deficient bacteria. Nevertheless, thepdpCmutant disseminated to the liver and spleen before being eliminated, whereas theiglJmutant did not. Taken together, our data demonstrate that the pathogenicity island genes tested are essential forF. tularensisSchu S4 virulence and further suggest thatpdpCmay play a unique role in this process, as indicated by its distinct intermediate phenotype.


2011 ◽  
Vol 79 (6) ◽  
pp. 2204-2214 ◽  
Author(s):  
Henriette Geier ◽  
Jean Celli

ABSTRACTFrancisella tularensis, the causative agent of tularemia, survives and proliferates within macrophages of the infected host as part of its pathogenic strategy, through an intracellular life cycle that includes phagosomal escape and extensive proliferation within the macrophage cytosol. Variousin vitromodels ofFrancisella-macrophage interactions have been developed, using either opsonic or nonopsonic phagocytosis, and have generated discrepant results on the timing and extent ofFrancisellaphagosomal escape. Here we have investigated whether either complement or antibody opsonization of the virulent prototypical type A strainFrancisella tularensissubsp.tularensisSchu S4 affects its intracellular cycle within primary murine bone marrow-derived macrophages. Opsonization of Schu S4 with either human serum or purified IgG enhanced phagocytosis but restricted phagosomal escape and intracellular proliferation. Opsonization of Schu S4 with either fresh serum or purified antibodies redirected bacteria from the mannose receptor (MR) to the complement receptor CR3, the scavenger receptor A (SRA), and the Fcγ receptor (FcγR), respectively. CR3-mediated uptake delayed maturation of the earlyFrancisella-containing phagosome (FCP) and restricted phagosomal escape, while FcγR-dependent phagocytosis was associated with superoxide production in the early FCP and restricted phagosomal escape and intracellular growth in an NADPH oxidase-dependent manner. Taken together, these results demonstrate that opsonophagocytic receptors alter the intracellular fate ofFrancisellaby delivering bacteria through phagocytic pathways that restrict phagosomal escape and intracellular proliferation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Beth A. Bachert ◽  
Joshua B. Richardson ◽  
Kevin D. Mlynek ◽  
Christopher P. Klimko ◽  
Ronald G. Toothman ◽  
...  

Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


1994 ◽  
Vol 107 (5) ◽  
pp. 1289-1295 ◽  
Author(s):  
V. Duprez ◽  
M. Smoljanovic ◽  
M. Lieb ◽  
A. Dautry-Varsat

The T lymphocyte growth factor interleukin 2 binds to surface high-affinity receptors and is rapidly internalized and degraded in acidic organelles. The alpha and beta chains of high-affinity interleukin 2 receptors are internalized together with interleukin 2. To identify the intracellular pathway followed by interleukin 2, we have compared the subcellular distribution of interleukin 2, transferrin and a fluid-phase marker, horseradish peroxidase, in the human T cell line IARC 301.5. Transferrin was used as a marker of early and recycling endosomes, and horseradish peroxidase to probe for the whole endocytic pathway. Fractionation of intracellular organelles on a discontinuous sucrose gradient showed that internalized interleukin 2 is initially mostly found in compartments with similar densities to transferrin, e.g. early and recycling endosomes. The kinetics of entry and exit of interleukin 2 from such organelles was much slower than that of transferrin. Later on, interleukin 2 is predominantly found in dense lysosome-containing fractions. Very little, if any, interleukin 2 was found in fractions corresponding to late endosomes containing horseradish peroxidase. These results suggest that, after endocytosis, interleukin 2 enters early or recycling endosomes before it reaches dense lysosomes.


2001 ◽  
Vol 114 (22) ◽  
pp. 4041-4049 ◽  
Author(s):  
Rosana Mesa ◽  
Cristina Salomón ◽  
Marcelo Roggero ◽  
Philip D. Stahl ◽  
Luis S. Mayorga

Soon after endocytosis, internalized material is sorted along different pathways in a process that requires the coordinated activity of several Rab proteins. Although abundant information is available about the subcellular distribution and function of some of the endocytosis-specific Rabs (e.g. Rab5 and Rab4), very little is known about some other members of this family of proteins. To unveil some of the properties of Rab22a, one of the less studied endosome-associated small GTPases, we have expressed the protein tagged with the green fluorescent protein in CHO cells. The results indicate that Rab22a associates with early and late endosomes (labeled by a 5 minute rhodamine-transferrin uptake and the cation-independent mannose 6-phosphate receptor, respectively) but not with lysosomes (labeled by 1 hour rhodamine horseradish peroxidase uptake followed by 1 hour chase). Overexpression of the protein causes a prominent morphological enlargement of the early and late endosomes. Two mutants were generated by site-directed mutagenesis, a negative mutant (Rab22aS19N, with reduced affinity for GTP) and a constitutively active mutant (Rab22aQ64L, with reduced endogenous GTPase activity). The distribution of the negative mutant was mostly cytosolic, whereas the positive mutant associated with early and late endosomes and, interestingly also with lysosomes and autophagosomes (labeled with monodansylcadaverine). Cells expressing Rab22a wild type and Rab22aS19N displayed decreased endocytosis of a fluid phase marker. Conversely, overexpression of Rab22aQ64L, which strongly affects the morphology of endosomes, did not inhibit bulk endocytosis. Our results show that Rab22a has a unique distribution along the endocytic pathway that is not shared by any other Rab protein, and that it strongly affects the morphology and function of endosomes.


Sign in / Sign up

Export Citation Format

Share Document