scholarly journals The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease

2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Ashley L. Marcinkiewicz ◽  
Ilva Lieknina ◽  
Xiuli Yang ◽  
Patricia L. Lederman ◽  
Thomas M. Hart ◽  
...  

ABSTRACT The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.

2006 ◽  
Vol 74 (12) ◽  
pp. 7024-7028 ◽  
Author(s):  
Evelyn Rossmann ◽  
Veronique Kitiratschky ◽  
Heidelore Hofmann ◽  
Peter Kraiczy ◽  
Markus M. Simon ◽  
...  

ABSTRACT Borrelia burgdorferi complement regulator-acquiring surface protein 1 (CRASP-1), the dominant factor H and FHL-1-binding protein of the Lyme disease spirochete B. burgdorferi, is implicated in pathogen persistence and was recently reported to be nonimmunogenic in humans. Here we show that serum samples from Lyme disease patients contain antibodies with exclusive specificity for nondenatured structural determinants of CRASP-1.


2005 ◽  
Vol 73 (4) ◽  
pp. 2351-2359 ◽  
Author(s):  
Reinhard Wallich ◽  
Joseph Pattathu ◽  
Veronique Kitiratschky ◽  
Christiane Brenner ◽  
Peter F. Zipfel ◽  
...  

ABSTRACT Complement regulator-acquiring surface protein 1 (CRASP-1) is the dominant factor-H-like protein 1 (FHL-1)- and factor-H-binding protein of Borrelia burgdorferi and is suggested to contribute to persistence of the pathogen. The prototype CRASP-1 of B. burgdorferi sensu stricto (CRASP-1Bb) has been formerly characterized. As shown recently, serum-resistant Borrelia afzelii strains express a unique FHL-1 and factor H-binding protein, designated CRASP-1Ba. Here, we describe for the first time the isolation and functional characterization of the gene encoding the full-length CRASP-1Ba of 28 kDa, which, upon processing, is predicted to be 26.4 kDa. CPASP-1Ba of B. afzelii spirochetes is associated with a genetic locus encoding the orthologous gbb54 gene family that maps to the linear plasmid of approximately 54 kb. Ligand affinity blotting techniques demonstrate that both native and recombinant CRASP-1Ba molecules strongly bind to FHL-1 and much more weakly to factor H. The FHL-1 and factor-H-binding site in CRASP-1Ba is shown to be localized to a 12-amino-acid residue domain at the C terminus of the protein. For comparison, the corresponding cspA-like gene(s) of a serum-sensitive Borrelia garinii strain has also been cloned and characterized. Most notably, two CRASP-1-related B. garinii proteins were identified; however, both molecules bind only weakly to FHL-1 and not at all to factor H. The present identification of the binding site of CRASP-1Ba represents an important step forward in our understanding of the pathogenesis of Lyme disease and may be helpful to design therapeutic regimens to interfere with complement evasion strategies of human pathogenic Borrelia strains.


2002 ◽  
Vol 70 (8) ◽  
pp. 4099-4105 ◽  
Author(s):  
Brian Stevenson ◽  
Kelly Babb

ABSTRACT The establishment of Borrelia burgdorferi infection involves numerous interactions between the bacteria and a variety of vertebrate host and arthropod vector tissues. This complex process requires regulated synthesis of many bacterial proteins. We now demonstrate that these spirochetes utilize a LuxS/autoinducer-2 (AI-2)-based quorum-sensing mechanism to regulate protein expression, the first system of cell-cell communication to be described in a spirochete. The luxS gene of B. burgdorferi was identified and demonstrated to encode a functional enzyme by complementation of an Escherichia coli luxS mutant. Cultured B. burgdorferi responded to AI-2 by altering the expression levels of a large number of proteins, including the complement regulator factor H-binding Erp proteins. Through this mechanism, a population of Lyme disease spirochetes may synchronize production of specific proteins needed for infection processes.


2011 ◽  
Vol 18 (6) ◽  
pp. 901-906 ◽  
Author(s):  
Christopher G. Earnhart ◽  
DeLacy V. L. Rhodes ◽  
Richard T. Marconi

ABSTRACTBorrelia burgdorferiOspC is an outer membrane lipoprotein required for the establishment of infection in mammals. Due to its universal distribution amongB. burgdorferisensu lato strains and high antigenicity, it is being explored for the development of a next-generation Lyme disease vaccine. An understanding of the surface presentation of OspC will facilitate efforts to maximize its potential as a vaccine candidate. OspC forms homodimers at the cell surface, and it has been hypothesized that it may also form oligomeric arrays. Here, we employ site-directed mutagenesis to test the hypothesis that interdimeric disulfide bonds at cysteine 130 (C130) mediate oligomerization.B. burgdorferiB31ospCwas replaced with a C130A substitution mutant to yield strain B31::ospC(C130A). Recombinant protein was also generated. Disulfide-bond-dependent oligomer formation was demonstrated and determined to be dependent on C130. Oligomerization was not required forin vivofunction, as B31::ospC(C130A) retained infectivity and disseminated normally. The total IgG response and the induced isotype pattern were similar between mice infected with untransformed B31 and those infected with the B31::ospC(C130A) strain. These data indicate that the immune response to OspC is not significantly altered by formation of OspC oligomers, a finding that has significant implications in Lyme disease vaccine design.


2007 ◽  
Vol 75 (9) ◽  
pp. 4227-4236 ◽  
Author(s):  
Tomasz Bykowski ◽  
Michael E. Woodman ◽  
Anne E. Cooley ◽  
Catherine A. Brissette ◽  
Volker Brade ◽  
...  

ABSTRACT The Lyme disease spirochete, Borrelia burgdorferi, is largely resistant to being killed by its hosts’ alternative complement activation pathway. One possible resistance mechanism of these bacteria is to coat their surfaces with host complement regulators, such as factor H. Five different B. burgdorferi outer surface proteins having affinities for factor H have been identified: complement regulator-acquiring surface protein 1 (BbCRASP-1), encoded by cspA; BbCRASP-2, encoded by cspZ; and three closely related proteins, BbCRASP-3, -4, and -5, encoded by erpP, erpC, and erpA, respectively. We now present analyses of the recently identified BbCRASP-2 and cspZ expression patterns throughout the B. burgdorferi infectious cycle, plus novel analyses of BbCRASP-1 and erp-encoded BbCRASPs. Our results, combined with data from earlier studies, indicate that BbCRASP-2 is produced primarily during established mammalian infection, while BbCRASP-1 is produced during tick-to-mammal and mammal-to-tick transmission stages but not during established mammalian infection, and Erp-BbCRASPs are produced from the time of transmission from infected ticks into mammals until they are later acquired by other feeding ticks. Transcription of cspZ and synthesis of BbCRASP-2 were severely repressed during cultivation in laboratory medium relative to mRNA levels observed during mammalian infection, and cspZ expression was influenced by culture temperature and pH, observations which will assist identification of the mechanisms employed by B. burgdorferi to control expression of this borrelial infection-associated protein.


2015 ◽  
Vol 59 (8) ◽  
pp. 4616-4624 ◽  
Author(s):  
Bijaya Sharma ◽  
Autumn V. Brown ◽  
Nicole E. Matluck ◽  
Linden T. Hu ◽  
Kim Lewis

ABSTRACTBorrelia burgdorferiis the causative agent of Lyme disease, which affects an estimated 300,000 people annually in the United States. When treated early, the disease usually resolves, but when left untreated, it can result in symptoms such as arthritis and encephalopathy. Treatment of the late-stage disease may require multiple courses of antibiotic therapy. Given that antibiotic resistance has not been observed forB. burgdorferi, the reason for the recalcitrance of late-stage disease to antibiotics is unclear. In other chronic infections, the presence of drug-tolerant persisters has been linked to recalcitrance of the disease. In this study, we examined the ability ofB. burgdorferito form persisters. Killing growing cultures ofB. burgdorferiwith antibiotics used to treat the disease was distinctly biphasic, with a small subpopulation of surviving cells. Upon regrowth, these cells formed a new subpopulation of antibiotic-tolerant cells, indicating that these are persisters rather than resistant mutants. The level of persisters increased sharply as the culture transitioned from the exponential to stationary phase. Combinations of antibiotics did not improve killing. Daptomycin, a membrane-active bactericidal antibiotic, killed stationary-phase cells but not persisters. Mitomycin C, an anticancer agent that forms adducts with DNA, killed persisters and eradicated growing and stationary cultures ofB. burgdorferi. Finally, we examined the ability of pulse dosing an antibiotic to eliminate persisters. After addition of ceftriaxone, the antibiotic was washed away, surviving persisters were allowed to resuscitate, and the antibiotic was added again. Four pulse doses of ceftriaxone killed persisters, eradicating all live bacteria in the culture.


2013 ◽  
Vol 82 (1) ◽  
pp. 380-392 ◽  
Author(s):  
Claudia Hammerschmidt ◽  
Arno Koenigs ◽  
Corinna Siegel ◽  
Teresia Hallström ◽  
Christine Skerka ◽  
...  

ABSTRACTCspA of the Lyme disease spirocheteBorrelia burgdorferirepresents a key molecule in immune evasion, protecting borrelial cells from complement-mediated killing. As previous studies focused almost exclusively on CspA ofB. burgdorferi, here we investigate the different binding capacities of CspA orthologs ofBorrelia burgdorferi,B. afzelii, andB. spielmaniifor complement regulator factor H and plasminogen and their ability to inhibit complement activation by either binding these host-derived plasma proteins or independently by direct interaction with components involved in formation of the lethal, pore-like terminal complement complex. To further examine their function in serum resistancein vivo, a serum-sensitiveB. gariniistrain was used to generate spirochetes, ectopically producing functional CspA orthologs. Irrespective of their species origin, all three CspA orthologs impart resistance to complement-mediated killing when produced in a serum-sensitiveB. gariniisurrogate strain. To analyze the inhibitory effect on complement activation and to assess the potential to inactivate C3b by binding of factor H and plasminogen, recombinant CspA orthologs were also investigated. All three CspA orthologs simultaneously bound factor H and plasminogen but differed in regard to their capacity to inactivate C3b via bound plasmin(ogen) and inhibit formation of the terminal complement complex. CspA ofB. afzeliibinds plasmin(ogen) and inhibits the terminal complement complex more efficiently than CspA ofB. burgdorferiandB. spielmanii. Taken together, CspA orthologs of serum-resistant Lyme disease spirochetes act as multifunctional evasion molecules that inhibit complement on two central activation levels, C3b generation and assembly of the terminal complement complex.


2020 ◽  
Vol 79 (5) ◽  
pp. 518-529 ◽  
Author(s):  
Zhe Ding ◽  
Luyun Sun ◽  
Yunfeng Bi ◽  
Yu Zhang ◽  
Peng Yue ◽  
...  

Abstract Borrelia burgdorferi (Bb), which is neurotropic, can attack the central nervous system (CNS), leading to the development of various neurologic symptoms. The pathogenesis of Lyme neuroborreliosis (LNB) remains poorly understood. Presently, there is a lack of knowledge of the changes in mRNA and proteins in the CNS following early disseminated Lyme disease. Explants from the frontal cortex of 3 rhesus brains were incubated with medium alone or with medium containing live Bb for 6, 12, or 24 hours. Then, we analyzed identified mRNA and proteins in the frontal cortex tissues, allowing for an in-depth view of the transcriptome and proteome for a macroscopic and unbiased understanding of early disseminated Lyme disease in the brain. Through bioinformatics analysis, a complex network of enriched pathways that were mobilized during the progression of Lyme spirochete infection was described. Furthermore, based on the analysis of omics data, translational regulation, glycosaminoglycan/proteoglycan-binding activity in colonization and dissemination to tissues, disease-associated genes, and synaptic function were enriched, which potentially play a role in pathogenesis during the interaction between frontal cortex tissues and spirochetes. These integrated omics results provide unbiased and comprehensive information for the further understanding of the molecular mechanisms of LNB.


2006 ◽  
Vol 188 (12) ◽  
pp. 4331-4339 ◽  
Author(s):  
Kelly Babb ◽  
Tomasz Bykowski ◽  
Sean P. Riley ◽  
M. Clarke Miller ◽  
Edward DeMoll ◽  
...  

ABSTRACT All examined isolates of the Lyme disease spirochete, Borrelia burgdorferi, naturally maintain numerous variants of a prophage family as circular cp32 episomes. Each cp32 carries a locus encoding one or two different Erp outer membrane, surface-exposed lipoproteins. Many of the Erp proteins bind a host complement regulator, factor H, which is hypothesized to protect the spirochete from complement-mediated killing. We now describe the isolation and characterization of a novel, chromosomally encoded protein, EbfC, that binds specific DNA sequences located immediately 5′ of all erp loci. This is one of the first site-specific DNA-binding proteins to be identified in any spirochete. The location of the ebfC gene on the B. burgdorferi chromosome suggests that the cp32 prophages have evolved to use this bacterial host protein for their own benefit and that EbfC probably plays additional roles in the bacterium. A wide range of other bacteria encode homologs of EbfC, none of which have been well characterized, so demonstration that B. burgdorferi EbfC is a site-specific DNA-binding protein has broad implications across the eubacterial kingdom.


Sign in / Sign up

Export Citation Format

Share Document