scholarly journals The Hybrid Histidine Kinase Hk1 Is Part of a Two-Component System That Is Essential for Survival of Borrelia burgdorferi in Feeding Ixodes scapularis Ticks

2011 ◽  
Vol 79 (8) ◽  
pp. 3117-3130 ◽  
Author(s):  
Melissa J. Caimano ◽  
Melisha R. Kenedy ◽  
Toru Kairu ◽  
Daniel C. Desrosiers ◽  
Michael Harman ◽  
...  

ABSTRACTTwo-component systems (TCS) are principal mechanisms by which bacteria adapt to their surroundings.Borrelia burgdorferiencodes only two TCS. One is comprised of a histidine kinase, Hk2, and the response regulator Rrp2. While the contribution of Hk2 remains unclear, Rrp2 is part of a regulatory pathway involving the spirochete's alternate sigma factors, RpoN and RpoS. Genes within the Rrp2/RpoN/RpoS regulon function to promote tick transmission and early infection. The other TCS consists of a hybrid histidine kinase, Hk1, and the response regulator Rrp1. Hk1 is composed of two periplasmic sensor domains (D1 and D2), followed by conserved cytoplasmic histidine kinase core, REC, and Hpt domains. In addition to its REC domain, Rrp1 contains a GGDEF motif characteristic of diguanylate cyclases. To investigate the role of Hk1 during the enzootic cycle, we inactivated this gene in two virulent backgrounds. Extensive characterization of the resulting mutants revealed a dramatic phenotype whereby Hk1-deficient spirochetes are virulent in mice and able to migrate out of the bite site during feeding but are killed within the midgut following acquisition. We hypothesize that the phosphorelay between Hk1 and Rrp1 is initiated by the binding of feeding-specific ligand(s) to Hk1 sensor domain D1 and/or D2. Once activated, Rrp1 directs the synthesis of cyclic dimeric GMP (c-di-GMP), which, in turn, modulates the expression and/or activity of gene products required for survival within feeding ticks. In contrast to the Rrp2/RpoN/RpoS pathway, which is active only within feeding nymphs, the Hk1/Rrp1 TCS is essential for survival during both larval and nymphal blood meals.

2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Matthew M. Schaefers

ABSTRACT The regulation and timely expression of bacterial genes during infection is critical for a pathogen to cause an infection. Bacteria have multiple mechanisms to regulate gene expression in response to their environment, one of which is two-component systems (TCS). TCS have two components. One component is a sensory histidine kinase (HK) that autophosphorylates when activated by a signal. The activated sensory histidine kinase then transfers the phosphoryl group to the second component, the response regulator, which activates transcription of target genes. The genus Burkholderia contains members that cause human disease and are often extensively resistant to many antibiotics. The Burkholderia cepacia complex (BCC) can cause severe lung infections in patients with cystic fibrosis (CF) or chronic granulomatous disease (CGD). BCC members have also recently been associated with several outbreaks of bacteremia from contaminated pharmaceutical products. Separate from the BCC is Burkholderia pseudomallei, which is the causative agent of melioidosis, a serious disease that occurs in the tropics, and a potential bioterrorism weapon. Bioinformatic analysis of sequenced Burkholderia isolates predicts that most strains have at least 40 TCS. The vast majority of these TCS are uncharacterized both in terms of the signals that activate them and the genes that are regulated by them. This review will highlight TCS that have been described to play a role in virulence in either the BCC or B. pseudomallei. Since many of these TCS are involved in virulence, TCS are potential novel therapeutic targets, and elucidating their function is critical for understanding Burkholderia pathogenesis.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Yuichiro Hashiguchi ◽  
Takeaki Tezuka ◽  
Yoshihiro Mouri ◽  
Kenji Konishi ◽  
Azusa Fujita ◽  
...  

ABSTRACT The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores. In response to water, the sporangia open and release the spores into external environments. The orphan response regulator TcrA functions as a global transcriptional activator during sporangium formation and dehiscence. Here, we report the characterization of an orphan hybrid histidine kinase, HhkA. Sporangia of an hhkA deletion mutant contained many distorted or ectopically germinated spores and scarcely opened to release the spores under sporangium dehiscence-inducing conditions. These phenotypic changes are quite similar to those observed in a tcrA deletion mutant. Comparative RNA sequencing analysis showed that genes controlled by HhkA mostly overlap TcrA-regulated genes. The direct interaction between HhkA and TcrA was suggested by a bacterial two-hybrid assay, but this was not conclusive. The phosphorylation of TcrA using acetyl phosphate as a phosphate donor markedly enhanced its affinity for the TcrA box sequences in the electrophoretic mobility shift assay. Taking these observations together with other results, we proposed that HhkA and TcrA compose a cognate two-component regulatory system, which controls the transcription of the genes involved in many aspects of morphological development, including sporangium formation, spore dormancy, and sporangium dehiscence in A. missouriensis. IMPORTANCE Actinoplanes missouriensis goes through complex morphological differentiation, including formation of flagellated spore-containing sporangia, sporangium dehiscence, swimming of zoospores, and germination of zoospores to filamentous growth. Although the orphan response regulator TcrA globally activates many genes required for sporangium formation, spore dormancy, and sporangium dehiscence, its partner histidine kinase remained unknown. Here, we analyzed the function of an orphan hybrid histidine kinase, HhkA, and proposed that HhkA constitutes a cognate two-component regulatory system with TcrA. That HhkA and TcrA homologues are highly conserved among the genus Actinoplanes and several closely related rare actinomycetes indicates that this possible two-component regulatory system is employed for complex morphological development in sporangium- and/or zoospore-forming rare actinomycetes.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Felipe Trajtenberg ◽  
Daniela Albanesi ◽  
Natalia Ruétalo ◽  
Horacio Botti ◽  
Ariel E. Mechaly ◽  
...  

ABSTRACT Response regulators are proteins that undergo transient phosphorylation, connecting specific signals to adaptive responses. Remarkably, the molecular mechanism of response regulator activation remains elusive, largely because of the scarcity of structural data on multidomain response regulators and histidine kinase/response regulator complexes. We now address this question by using a combination of crystallographic data and functional analyses in vitro and in vivo, studying DesR and its cognate sensor kinase DesK, a two-component system that controls membrane fluidity in Bacillus subtilis. We establish that phosphorylation of the receiver domain of DesR is allosterically coupled to two distinct exposed surfaces of the protein, controlling noncanonical dimerization/tetramerization, cooperative activation, and DesK binding. One of these surfaces is critical for both homodimerization- and kinase-triggered allosteric activations. Moreover, DesK induces a phosphorylation-independent activation of DesR in vivo, uncovering a novel and stringent level of specificity among kinases and regulators. Our results support a model that helps to explain how response regulators restrict phosphorylation by small-molecule phosphoryl donors, as well as cross talk with noncognate sensors. IMPORTANCE The ability to sense and respond to environmental variations is an essential property for cell survival. Two-component systems mediate key signaling pathways that allow bacteria to integrate extra- or intracellular signals. Here we focus on the DesK/DesR system, which acts as a molecular thermometer in B. subtilis, regulating the cell membrane’s fluidity. Using a combination of complementary approaches, including determination of the crystal structures of active and inactive forms of the response regulator DesR, we unveil novel molecular mechanisms of DesR’s activation switch. In particular, we show that the association of the cognate histidine kinase DesK triggers DesR activation beyond the transfer of the phosphoryl group. On the basis of sequence and structural analyses of other two-component systems, this activation mechanism appears to be used in a wide range of sensory systems, contributing a further level of specificity control among different signaling pathways.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Jennifer K. Teschler ◽  
Andrew T. Cheng ◽  
Fitnat H. Yildiz

ABSTRACT Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. cholerae. vxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels. IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our understanding of the role that TCSs play in the regulation of V. cholerae biofilm formation.


2000 ◽  
Vol 182 (8) ◽  
pp. 2068-2076 ◽  
Author(s):  
Dagmar Beier ◽  
Rainer Frank

ABSTRACT Two-component systems are frequently involved in the adaptation of bacteria to changing environmental conditions at the level of transcriptional regulation. Here we report the characterization of members of the two-component systems of the gastric pathogenHelicobacter pylori deduced from the genome sequence of strain 26695. We demonstrate that the response regulators HP166, HP1043, and HP1021 have essential functions, as disruption of the corresponding genes is lethal for the bacteria, irrespective of the fact that HP1043 and HP1021 have nonconserved substitutions in crucial amino acids of their receiver domains. An analysis of the in vitro phosphorylation properties of the two-component proteins demonstrates that HP244-HP703 and HP165-HP166 are cognate histidine kinase-response regulator pairs. Furthermore, we provide evidence that the variability of the histidine kinase HP165 caused by a poly(C) tract of variable length close to the 3′ end of open reading frame 165/164 does not interfere with the kinase activity of the transmitter domain of HP165.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 795-806 ◽  
Author(s):  
Marcia Shu-Wei Su ◽  
Michael G. Gänzle

This study characterized the two-component regulatory systems encoded by bfrKRT and cemAKR, and assessed their influence on biofilm formation by Lactobacillus reuteri 100-23. A method for deletion of multiple genes was employed to disrupt the genetic loci of two-component systems. The operons bfrKRT and cemAKR showed complementary organization. Genes bfrKRT encode a histidine kinase, a response regulator and an ATP-binding cassette-type transporter with a bacteriocin-processing peptidase domain, respectively. Genes cemAKR code for a signal peptide, a histidine kinase and a response regulator, respectively. Deletion of single or multiple genes in the operons bfrKRT and cemAKR did not affect cell morphology, growth or the sensitivity to various stressors. However, gene disruption affected biofilm formation; this effect was dependent on the carbon source. Deletion of bfrK or cemA increased sucrose-dependent biofilm formation in vitro. Glucose-dependent biofilm formation was particularly increased by deletion of cemK. The expression of cemK and cemR was altered by deletion of bfrK, indicating cross-talk between these two regulatory systems. These results may contribute to our understanding of the genetic factors related to the biofilm formation and competitiveness of L. reuteri in intestinal ecosystems.


2018 ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Nathan Mih ◽  
Jonathan Monk ◽  
Erol Kavvas ◽  
James T. Yurkovich ◽  
...  

AbstractTwo-component systems (TCSs) consist of a histidine kinase and a response regulator. Here, we evaluated the conservation of the AgrAC TCS among 149 completely sequenced S. aureus strains. It is composed of four genes: agrBDCA. We found that: i) AgrAC system (agr) was found in all but one of the 149 strains; ii) The agr positive strains were further classified into four agr types based on AgrD protein sequences, iii) the four agr types not only specified the chromosomal arrangement of the agr genes but also the sequence divergence of AgrC histidine kinase protein, which confers signal specificity, iv) the sequence divergence was reflected in distinct structural properties especially in the transmembrane region and second extracellular binding domain, and v) there was a strong correlation between the agr type and the virulence genomic profile of the organism. Taken together, these results demonstrate that bioinformatic analysis of the agr locus leads to a classification system that correlates with the presence of virulence factors and protein structural properties.


2017 ◽  
Vol 199 (22) ◽  
Author(s):  
Qing Chen ◽  
Victoria Ng ◽  
Jason M. Warfel ◽  
Tod J. Merkel ◽  
Scott Stibitz

ABSTRACT The two-component response regulator RisA, encoded by open reading frame BP3554 in the Bordetella pertussis Tohama I genomic sequence, is a known activator of vrg genes, a set of genes whose expression is increased under the same environmental conditions (known as modulation) that result in repression of the bvgAS virulence regulon. Here we demonstrate that RisA is phosphorylated in vivo and that RisA phosphorylation is required for activation of vrg genes. An adjacent histidine kinase gene, risS, is truncated by frameshift mutation in B. pertussis but not in Bordetella bronchiseptica or Bordetella parapertussis. Neither deletion of risS′ or bvgAS nor phenotypic modulation with MgSO4 affected levels of phosphorylated RisA (RisA∼P) in B. pertussis. However, RisA phosphorylation did require the histidine kinase encoded by BP3223, here named RisK (cognate histidine kinase of RisA). RisK was also required for expression of the vrg genes. This requirement could be obviated by the introduction of the phosphorylation-mimicking RisAD60E mutant, indicating that an active conformation of RisA, but not phosphorylation per se, is crucial for vrg activation. Interestingly, expression of vrg genes is still modulated by MgSO4 in cells harboring the RisAD60E mutation, suggesting that the activated RisA senses additional signals to control vrg expression in response to environmental stimuli. IMPORTANCE In B. pertussis, the BvgAS two-component system activates the expression of virulence genes by binding of BvgA∼P to their promoters. Expression of the reciprocally regulated vrg genes requires RisA and is also repressed by the Bvg-activated BvgR. RisA is an OmpR-like response regulator, but RisA phosphorylation was not expected because the gene for its presumed, cooperonic, histidine kinase is inactivated by mutation. In this study, we demonstrate phosphorylation of RisA in vivo by a noncooperonic histidine kinase. We also show that RisA phosphorylation is necessary but not sufficient for vrg activation but, importantly, is not affected by BvgAS status. Instead, we propose that vrg expression is controlled by BvgAS through its regulation of BvgR, a cyclic di-GMP (c-di-GMP) phosphodiesterase.


2015 ◽  
Vol 197 (9) ◽  
pp. 1592-1605 ◽  
Author(s):  
Paul M. Luethy ◽  
Steven Huynh ◽  
Craig T. Parker ◽  
David R. Hendrixson

ABSTRACTCampylobacter jejuniis a leading cause of bacterial diarrheal disease and a frequent commensal of the intestinal tract in poultry and other animals. For optimal growth and colonization of hosts,C. jejuniemploys two-component regulatory systems (TCSs) to monitor environmental conditions and promote proper expression of specific genes. We analyzed the potential ofC. jejuniCjj81176_1484(Cjj1484) andCjj81176_1483(Cjj1483) to encode proteins of a cognate TCS that influences expression of genes possibly important forC. jejunigrowth and colonization. Transcriptome analysis revealed that the regulons of the Cjj81176_1484 (Cjj1484) histidine kinase and the Cjj81176_1483 (Cjj1483) response regulator contain many common genes, suggesting that these proteins likely form a cognate TCS. We found that this TCS generally functions to repress expression of specific proteins with roles in metabolism, iron/heme acquisition, and respiration. Furthermore, the TCS repressed expression ofCjj81176_0438andCjj81176_0439, which had previously been found to encode a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract. However, the TCS and other specific genes whose expression is repressed by the TCS were not required for colonization of chicks. We observed that the Cjj1483 response regulator binds target promoters in both unphosphorylated and phosphorylated forms and influences expression of some specific genes independently of the Cjj1484 histidine kinase. This work further expands the signaling mechanisms ofC. jejuniand provides additional insights regarding the complex and multifactorial regulation of many genes involved in basic metabolism, respiration, and nutrient acquisition that the bacterium requires for optimal growth in different environments.IMPORTANCEBacterial two-component regulatory systems (TCSs) link environmental cues to expression of specific genes that enable optimal bacterial growth or colonization of hosts. We found that theCampylobacter jejuniCjj1484 histidine kinase and Cjj1483 response regulator function as a cognate TCS to largely repress expression of target genes encoding a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract, as well as other genes encoding proteins for heme or iron acquisition, metabolism, and respiration. We also discovered different modes by which Cjj1483 may mediate repression with and without Cjj1484. This work provides insight into the signal transduction mechanisms of a leading cause of bacterial diarrheal disease and emphasizes the multifactorial and complex regulation of specific biological processes inC. jejuni.


Sign in / Sign up

Export Citation Format

Share Document