scholarly journals Structural requirements of muramylpeptides for induction of necrosis at sites primed with Mycobacterium tuberculosis in guinea pigs.

1987 ◽  
Vol 55 (5) ◽  
pp. 1279-1288 ◽  
Author(s):  
S Nagao ◽  
H Takada ◽  
K Yagawa ◽  
H Kutsukake ◽  
T Shiba ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Mamta Singh ◽  
Prabhakar Tiwari ◽  
Garima Arora ◽  
Sakshi Agarwal ◽  
Saqib Kidwai ◽  
...  

Abstract Inorganic polyphosphate (PolyP) plays an essential role in microbial stress adaptation, virulence and drug tolerance. The genome of Mycobacterium tuberculosis encodes for two polyphosphate kinases (PPK-1, Rv2984 and PPK-2, Rv3232c) and polyphosphatases (ppx-1, Rv0496 and ppx-2, Rv1026) for maintenance of intracellular PolyP levels. Microbial polyphosphate kinases constitute a molecular mechanism, whereby microorganisms utilize PolyP as phosphate donor for synthesis of ATP. In the present study we have constructed ppk-2 mutant strain of M. tuberculosis and demonstrate that PPK-2 enzyme contributes to its ability to cause disease in guinea pigs. We observed that ppk-2 mutant strain infected guinea pigs had significantly reduced bacterial loads and tissue pathology in comparison to wild type infected guinea pigs at later stages of infection. We also report that in comparison to the wild type strain, ppk-2 mutant strain was more tolerant to isoniazid and impaired for survival in THP-1 macrophages. In the present study we have standardized a luciferase based assay system to identify chemical scaffolds that are non-cytotoxic and inhibit M. tuberculosis PPK-2 enzyme. To the best of our knowledge this is the first study demonstrating feasibility of high throughput screening to obtain small molecule PPK-2 inhibitors.


Vaccine ◽  
2012 ◽  
Vol 30 (9) ◽  
pp. 1572-1582 ◽  
Author(s):  
Shaobin Shang ◽  
Crystal A. Shanley ◽  
Megan L. Caraway ◽  
Eileen A. Orme ◽  
Marcela Henao-Tamayo ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66310 ◽  
Author(s):  
Ciaran Skerry ◽  
Supriya Pokkali ◽  
Michael Pinn ◽  
Nicholas A. Be ◽  
Jamie Harper ◽  
...  

2001 ◽  
Vol 42 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Aouatef Bellamine ◽  
Anil T. Mangla ◽  
Allen L. Dennis ◽  
W. David Nes ◽  
Michael R. Waterman

2013 ◽  
Vol 195 (12) ◽  
pp. 2839-2851 ◽  
Author(s):  
R. Singh ◽  
M. Singh ◽  
G. Arora ◽  
S. Kumar ◽  
P. Tiwari ◽  
...  

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S33-S33
Author(s):  
Paxton Cruz ◽  
Cody Ruhl ◽  
Michael Shiloh

Abstract Background A hallmark symptom of active pulmonary tuberculosis vital for disease transmission is cough. The current paradigm for tuberculosis-related cough is that it results from airway damage or irritation. However, there is limited experimental data to support this theory, and whether Mycobacterium tuberculosis (Mtb) induces cough to facilitate its own transmission has not been explored. The cough reflex is a complex and coordinated event involving both the nervous and musculoskeletal systems initiated by particulate or chemical molecules activating nociceptive neurons, which sense pain or irritation. This activation induces a signaling cascade ultimately resulting in a cough. Respiratory nociceptive neurons innervate the airway of humans and most mammals and thus are poised to respond to noxious molecules to help protect the lung from damage. Because Mtb is a lung pathogen, cough is a primary mechanism of Mtb transmission, and respiratory nociceptive neurons activate cough, we hypothesized that Mtb produces molecules that stimulate cough thereby facilitating its spread from infected to uninfected individuals. We previously identified a cough molecule produced by Mtb, and in this work characterize its neuronal receptor using genetics, biochemistry, and pharmacology. Methods We used an in vitro neuronal activation bioassay to study Mtb cough-inducing molecules. We also used a biochemical assay to identify the cough receptor. Finally, we used gene silencing, biochemistry, and pharmacologic inhibition to validate and characterize the activity of the newly discovered cough receptor. Results We isolated a complex lipid produced by Mtb that activates nociceptive neurons. Both an organic Mtb extract and the purified molecule alone were sufficient to induce cough in a conscious guinea pig cough model and guinea pigs infected with wild-type Mtb cough much more frequently than guinea pigs infected with Mtb strains unable to produce nociceptive molecules. Using genetics, biochemistry, and pharmacology techniques, we identified and validated a cough receptor for the Mtb lipid expressed on nociceptive neurons. Conclusion We conclude that Mtb produces a molecule that activates nociceptive neurons and induces cough through a specific neuronal receptor. These findings have significant implications for our understanding of Mtb transmission. Disclosures All Authors: No reported Disclosures.


2005 ◽  
Vol 73 (4) ◽  
pp. 2379-2386 ◽  
Author(s):  
Desmond M. Collins ◽  
Bronwyn Skou ◽  
Stefan White ◽  
Shalome Bassett ◽  
Lauren Collins ◽  
...  

ABSTRACT Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex, has a particularly wide host range and causes tuberculosis in most mammals, including humans. A signature tag mutagenesis approach, which employed illegitimate recombination and infection of guinea pigs, was applied to M. bovis to discover genes important for virulence and to find potential vaccine candidates. Fifteen attenuated mutants were identified, four of which produced no lesions when inoculated separately into guinea pigs. One of these four mutants had nine deleted genes including mmpL4 and sigK and, in guinea pigs with aerosol challenge, provided protection against tuberculosis at least equal to that of M. bovis BCG. Seven mutants had mutations near the esxA (esat-6) locus, and immunoblot analysis of these confirmed the essential role of other genes at this locus in the secretion of EsxA (ESAT-6) and EsxB (CFP10). Mutations in the eight other attenuated mutants were widely spread through the chromosome and included pks1, which is naturally inactivated in clinical strains of M. tuberculosis. Many genes identified were different from those found by signature tag mutagenesis of M. tuberculosis by use of a mouse infection model and illustrate how the use of different approaches enables identification of a wider range of attenuating mutants.


2000 ◽  
Vol 68 (2) ◽  
pp. 990-993 ◽  
Author(s):  
Roberto Colangeli ◽  
John S. Spencer ◽  
Pablo Bifani ◽  
Alan Williams ◽  
Konstantin Lyashchenko ◽  
...  

ABSTRACT In a search for new skin test reagents specific for tuberculosis, we found that the antigen encoded by gene Rv3874 of Mycobacterium tuberculosis elicited delayed-type hypersensitivity in M. tuberculosis-infected guinea pigs but not in control animals immunized with Mycobacterium bovis bacillus Calmette-Guérin (BCG) or Mycobacterium avium. The antigen, which was named MTSA-10 (for M. tuberculosis-specific antigen 10), is a prime candidate for a component of a new tuberculin that will allow discrimination by a skin test of latent M. tuberculosis infection from vaccination with BCG or from sensitization with environmental, nontuberculous mycobacteria.


Sign in / Sign up

Export Citation Format

Share Document