phosphate donor
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Chao Zhong ◽  
Bernd Nidetzky

AbstractEnzyme-catalyzed iterative β-1,4-glycosylation of β-glycosides is promising for bottom-up polymerization of reducing-end-modified cello-oligosaccharide chains. Self-assembly of the chains from solution yields crystalline nanocellulose materials with properties that are tunable by the glycoside group used. Cellulose chains with a reducing-end thiol group are of interest to install a controllable pattern of site-selective modifications into the nanocellulose material. Selection of the polymerizing enzyme (cellodextrin phosphorylase; CdP) was pursued here to enhance the synthetic precision of β-1-thio-glucose conversion to generate pure “1-thio-cellulose” (≥95%) unencumbered by plain (unlabeled) cellulose resulting from enzymatic side reactions. The CdP from Clostridium stercorarium (CsCdP) was 21 times more active on β-1-thio-glucose (0.17 U/mg; 45 °C) than the CdP from Clostridium cellulosi (CcCdP), and it lacked hydrolase activity, which is substantial in CcCdP, against the α-d-glucose 1-phosphate donor substrate. The combination of these enzyme properties indicated that CsCdP is a practical catalyst for 1-thio-cellulose synthesis directly from β-1-thio-glucose (8 h; 25 mol% yield) that does not require a second enzyme (cellobiose phosphorylase), which was essential when using the less selective CcCdP. The 1-thio-cellulose chains had an average degree of polymerization of ∼10 and were assembled into highly crystalline cellulose II crystallinity material.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1308
Author(s):  
Ana Asenjo-Bueno ◽  
Elena Alcalde-Estévez ◽  
Mariam El Assar ◽  
Gemma Olmos ◽  
Patricia Plaza ◽  
...  

Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas, compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells (SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4 expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxidant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular function in old mice.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3601
Author(s):  
Raja Mohanrao ◽  
Ruth Manorama ◽  
Shubhra Ganguli ◽  
Mithun C. Madhusudhanan ◽  
Rashna Bhandari ◽  
...  

IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates—scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5—from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.


2021 ◽  
Author(s):  
Yasunobu Mori ◽  
Hiroki Kawamura ◽  
Takaaki Sato ◽  
Takayuki Fujita ◽  
Ryuhei Nagata ◽  
...  

Serine kinase catalyzes the phosphorylation of free serine (Ser) to produce O -phosphoserine (Sep). An ADP-dependent Ser kinase in the hyperthermophilic archaeon Thermococcus kodakarensis ( Tk -SerK) is involved in cysteine (Cys) biosynthesis and most likely Ser assimilation. An ATP-dependent Ser kinase in the mesophilic bacterium Staphylococcus aureus is involved in siderophore biosynthesis. Although proteins displaying various degrees of similarity with Tk -SerK are distributed in a wide range of organisms, it is unclear if they are actually Ser kinases. Here we examined proteins from Desulfurococcales species in Crenarchaeota that display moderate similarity with Tk -SerK from Euryarchaeota (42-45% identical). Tk - serK homologs from Staphylothermus marinus (Smar_0555), Desulfurococcus amylolyticus (DKAM_0858), and Desulfurococcus mucosus (Desmu_0904) were expressed in Escherichia coli . All three partially purified recombinant proteins exhibited Ser kinase activity utilizing ATP rather than ADP as a phosphate donor. Purified Smar_0555 protein displayed activity towards l -Ser, but not with other compounds including d -Ser, l -threonine and l -homoserine. The enzyme utilized ATP, UTP, GTP, CTP, and the inorganic polyphosphates triphosphate and tetraphosphate as the phosphate donor. Kinetic analysis indicated that the Smar_0555 protein preferred nucleoside 5’-triphosphates compared to triphosphate as a phosphate donor. Transcript levels and Ser kinase activity in S. marinus cells grown with or without serine suggested that the Smar_0555 gene is constitutively expressed. The genes encoding Ser kinases examined here form an operon with genes most likely responsible for the conversion between Sep and 3-phosphoglycerate of central sugar metabolism, suggesting that the ATP-dependent Ser kinases from Desulfurococcales play a role in the assimilation of Ser. IMPORTANCE Homologs of the ADP-dependent Ser kinase from the archaeon Thermococcus kodakarensis ( Tk -SerK) include representatives from all three domains of life. The results of this study show that even homologs from the archaeal order Desulfurococcales, which are the most structurally related to the ADP-dependent Ser kinases from the Thermococcales, are Ser kinases that utilize ATP, and in at least some cases inorganic polyphosphates, as the phosphate donor. The differences in properties between the Desulfurococcales and Thermococcales enzymes raise the possibility that Tk -SerK homologs constitute a group of kinases that phosphorylate free serine with a wide range of phosphate donors.


2020 ◽  
Author(s):  
Koh Takeuchi ◽  
Yoshiki Ikeda ◽  
Miki Senda ◽  
Ayaka Harada ◽  
Koji Okuwaki ◽  
...  

SummaryMost kinases function with ATP. However, contrary to the prevailing dogma, phosphatidylinositol 5-phosphate 4-kinase β (PI5P4Kβ) utilizes GTP as a primary phosphate donor with a unique binding mode for GTP. Although PI5P4Kβ is evolved from a primordial ATP-utilizing enzyme, PI4P5K, how PI5P4Kβ evolutionarily acquired the GTP preference to function as a cellular GTP sensor remains unclear. In this study, we show that the short nucleotide base-recognition motif, TRNVF, is responsible for the GTP binding of PI5P4Kβ, and also confers onto PI5P4Kβ an unexpected specificity that extends to inosine triphosphate (ITP) and xanthosine triphosphate (XTP). A mutational study with GTP analogues suggests that the extended specificity is an obligatory consequence to the acquisition of GTP-dependent activity. However, as the cellular concentrations of ITP and XTP are typically negligible, PI5P4Kβ can still function as a GTP sensor, suggesting that the cellular physiological conditions leave room for the functional evolution of PI5P4Kβ.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 60 ◽  
Author(s):  
Marina Simona Robescu ◽  
Immacolata Serra ◽  
Marco Terreni ◽  
Daniela Ubiali ◽  
Teodora Bavaro

We here described a three-step multi-enzymatic reaction for the one-pot synthesis of vidarabine 5′-monophosphate (araA-MP), an antiviral drug, using arabinosyluracil (araU), adenine (Ade), and adenosine triphosphate (ATP) as precursors. To this aim, three enzymes involved in the biosynthesis of nucleosides and nucleotides were used in a cascade mode after immobilization: uridine phosphorylase from Clostridium perfringens (CpUP), a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), and deoxyadenosine kinase from Dictyostelium discoideum (DddAK). Specifically, CpUP catalyzes the phosphorolysis of araU thus generating uracil and α-d-arabinose-1-phosphate. AhPNP catalyzes the coupling between this latter compound and Ade to form araA (vidarabine). This nucleoside becomes the substrate of DddAK, which produces the 5′-mononucleotide counterpart (araA-MP) using ATP as the phosphate donor. Reaction conditions (i.e., medium, temperature, immobilization carriers) and biocatalyst stability have been balanced to achieve the highest conversion of vidarabine 5′-monophosphate (≥95.5%). The combination of the nucleoside phosphorylases twosome with deoxyadenosine kinase in a one-pot cascade allowed (i) a complete shift in the equilibrium-controlled synthesis of the nucleoside towards the product formation; and (ii) to overcome the solubility constraints of araA in aqueous medium, thus providing a new route to the highly productive synthesis of araA-MP.


2019 ◽  
Vol 75 (12) ◽  
pp. 1129-1137
Author(s):  
Clyde A. Smith ◽  
Marta Toth ◽  
Nichole K. Stewart ◽  
Lauren Maltz ◽  
Sergei B. Vakulenko

Aminoglycoside phosphotransferases (APHs) are one of three families of aminoglycoside-modifying enzymes that confer high-level resistance to the aminoglycoside antibiotics via enzymatic modification. This has now rendered many clinically important drugs almost obsolete. The APHs specifically phosphorylate hydroxyl groups on the aminoglycosides using a nucleotide triphosphate as the phosphate donor. The APH(2′′) family comprises four distinct members, isolated primarily from Enterococcus sp., which vary in their substrate specificities and also in their preference for the phosphate donor (ATP or GTP). The structure of the ternary complex of APH(2′′)-IIIa with GDP and kanamycin was solved at 1.34 Å resolution and was compared with substrate-bound structures of APH(2′′)-Ia, APH(2′′)-IIa and APH(2′′)-IVa. In contrast to the case for APH(2′′)-Ia, where it was proposed that the enzyme-mediated hydrolysis of GTP is regulated by conformational changes in its N-terminal domain upon GTP binding, APH(2′′)-IIa, APH(2′′)-IIIa and APH(2′′)-IVa show no such regulatory mechanism, primarily owing to structural differences in the N-terminal domains of these enzymes.


2019 ◽  
Author(s):  
Ankan Banerjee ◽  
Yehuda Goldgur ◽  
Beate Schwer ◽  
Stewart Shuman

Abstract Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave β sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution—as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4—that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.


2018 ◽  
Vol 115 (30) ◽  
pp. E7081-E7090 ◽  
Author(s):  
Laura E. Bowie ◽  
Tamara Maiuri ◽  
Melanie Alpaugh ◽  
Michelle Gabriel ◽  
Nicolas Arbez ◽  
...  

The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington’s disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.


2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Iram Aziz ◽  
Tahira Bibi ◽  
Naeem Rashid ◽  
Riku Aono ◽  
Haruyuki Atomi ◽  
...  

ABSTRACTThe genome of the hyperthermophilic archaeonPyrobaculum calidifontiscontains an open reading frame, Pcal_0041, annotated as encoding a PfkB family ribokinase, consisting of phosphofructokinase and pyrimidine kinase domains. Among the biochemically characterized enzymes, the Pcal_0041 protein was 37% identical to the phosphofructokinase (Ape_0012) fromAeropyrum pernix, which displayed kinase activity toward a broad spectrum of substrates, including sugars, sugar phosphates, and nucleosides, and 36% identical to a phosphofructokinase fromDesulfurococcus amylolyticus. To examine the biochemical function of the Pcal_0041 protein, we cloned and expressed the gene and purified the recombinant protein. Although the Pcal_0041 protein contained a putative phosphofructokinase domain, it exhibited only low levels of phosphofructokinase activity. The recombinant enzyme catalyzed the phosphorylation of nucleosides and, to a lower extent, sugars and sugar phosphates. Surprisingly, among the substrates tested, the highest activity was detected with ribose 1-phosphate (R1P), followed by cytidine and uridine. The catalytic efficiency (kcat/Km) toward R1P was 11.5 mM−1· s−1. ATP was the most preferred phosphate donor, followed by GTP. Activity measurements with cell extracts ofP. calidifontisindicated the presence of nucleoside phosphorylase activity, which would provide the means to generate R1P from nucleosides. The study suggests that, in addition to the recently identified ADP-dependent ribose 1-phosphate kinase (R1P kinase) inThermococcus kodakarensisthat functions in the pentose bisphosphate pathway, R1P kinase is also present in members of the Crenarchaeota.IMPORTANCEThe discovery of the pentose bisphosphate pathway inThermococcus kodakarensishas clarified how this archaeon can degrade nucleosides. Homologs of the enzymes of this pathway are present in many members of the Thermococcales, suggesting that this metabolism occurs in these organisms. However, this is not the case in other archaea, and degradation mechanisms for nucleosides or ribose 1-phosphate are still unknown. This study reveals an important first step in understanding nucleoside metabolism in Crenarchaeota and identifies an ATP-dependent ribose 1-phosphate kinase inPyrobaculum calidifontis. The enzyme is structurally distinct from previously characterized archaeal members of the ribokinase family and represents a group of proteins found in many crenarchaea.


Sign in / Sign up

Export Citation Format

Share Document