scholarly journals Polyphosphate Deficiency in Mycobacterium tuberculosis Is Associated with Enhanced Drug Susceptibility and Impaired Growth in Guinea Pigs

2013 ◽  
Vol 195 (12) ◽  
pp. 2839-2851 ◽  
Author(s):  
R. Singh ◽  
M. Singh ◽  
G. Arora ◽  
S. Kumar ◽  
P. Tiwari ◽  
...  
2010 ◽  
Vol 5 (1) ◽  
pp. 13-20
Author(s):  
S Acharya ◽  
P Ghimire ◽  
DK Khadka ◽  
S Nepali

Background: Tuberculosis (TB) is among the most serious infectious cause of global morbidity and mortality. Emergence of Multi-drug resistant tuberculosis (MDR-TB) is posing an increased threat to TB control programs. Drug susceptibility testing (DST) of Mycobacterium tuberculosis (M. tuberculosis) isolates is important for tackling such problems. Setting: National Tuberculosis Centre (NTC), Thimi, Bhaktapur, Nepal. Objectives: Comparative evaluation of two in vitro DST methods in determining susceptibility of M. tuberculosis isolates from patients attending NTC, to front-line anti-TB drugs: (Isoniazid-INH, Rifampicin-RFP, Streptomycin-SM, and Ethambutol-EMB). Methodology: This study was conducted from Sep 2006-Jun 2007. A total of 862 sputum samples (diagnosis or follow up cases) collected from patients (type of patients or their categories was not differentiated in this study) attending NTC bacteriology lab for sputum direct smear microscopy were analyzed using fluorescence microscopy. All smear positive samples, smear negative samples requested for culture were cultured. All culture positive samples confirmed as M. tuberculosis by biochemical tests were processed for DST by both proportion (PR) and resistance ratio (RR) methods. Results: Out of 862 sputum samples analyzed, 226 (26.2%) samples were positive for Acid Fast Bacilli (AFB) by fluorescence microscopy. Among 323 samples 226 smear positive samples and 97 smear negative samples requested for culture), 221 (68.4%) were culture positive, 92 (28.5%) were culture negative and 10 (3.1%) were contaminated. Out of 221 isolates of M. tuberculosis, 57.5% were resistant to one or more drugs by the PR method and 56.6% by the RR method. Similarly, MDR isolates were 29.9% and 29% by PR and RR methods respectively. On correlation analysis using Mc Nemar Chi-square test, no significant difference between the two tests were observed (p>0.05). The results showed high agreement between both methods and agreement rates to INH, RFP, SM and EMB were 93.2%, 93.7%, 93.2% and 94.1% respectively. Similarly, the agreement rates between both methods using kappa analysis showed kappa (k) value of 0.86, 0.85, 0.86 and 0.84 for INH, RFP, SM and EMB respectively, which is believed to be good agreement between both methods (k=0.80 to 1.00: Very good agreement). Conclusion: In conclusion, this study showed that both the Proportion and Resistance ratio methods are equally good for determining drug susceptibility of M. tuberculosis. Keywords: Mycobacterium tuberculosis; Drug Susceptibility Testing; Proportion Method; Resistance Ratio Method. DOI: 10.3126/saarctb.v5i1.3078 SAARC J. Tuber. Lung Dis. HIV/AIDS 2008 Vol.5(1) 13-20


2008 ◽  
Vol 53 (2) ◽  
pp. 808-810 ◽  
Author(s):  
Agustina I. de la Iglesia ◽  
Emma J. Stella ◽  
Héctor R. Morbidoni

ABSTRACT Resistance to rifampin (rifampicin), isoniazid, and streptomycin of 69 Mycobacterium tuberculosis isolates was analyzed by an in-house method based on mycobacteriophage D29 and a colorimetric micromethod. Both methods showed sensitivity and specificity values ranging from 93% to 100%. These simple methods offer an option for drug resistance assessment of M. tuberculosis.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Mamta Singh ◽  
Prabhakar Tiwari ◽  
Garima Arora ◽  
Sakshi Agarwal ◽  
Saqib Kidwai ◽  
...  

Abstract Inorganic polyphosphate (PolyP) plays an essential role in microbial stress adaptation, virulence and drug tolerance. The genome of Mycobacterium tuberculosis encodes for two polyphosphate kinases (PPK-1, Rv2984 and PPK-2, Rv3232c) and polyphosphatases (ppx-1, Rv0496 and ppx-2, Rv1026) for maintenance of intracellular PolyP levels. Microbial polyphosphate kinases constitute a molecular mechanism, whereby microorganisms utilize PolyP as phosphate donor for synthesis of ATP. In the present study we have constructed ppk-2 mutant strain of M. tuberculosis and demonstrate that PPK-2 enzyme contributes to its ability to cause disease in guinea pigs. We observed that ppk-2 mutant strain infected guinea pigs had significantly reduced bacterial loads and tissue pathology in comparison to wild type infected guinea pigs at later stages of infection. We also report that in comparison to the wild type strain, ppk-2 mutant strain was more tolerant to isoniazid and impaired for survival in THP-1 macrophages. In the present study we have standardized a luciferase based assay system to identify chemical scaffolds that are non-cytotoxic and inhibit M. tuberculosis PPK-2 enzyme. To the best of our knowledge this is the first study demonstrating feasibility of high throughput screening to obtain small molecule PPK-2 inhibitors.


Vaccine ◽  
2012 ◽  
Vol 30 (9) ◽  
pp. 1572-1582 ◽  
Author(s):  
Shaobin Shang ◽  
Crystal A. Shanley ◽  
Megan L. Caraway ◽  
Eileen A. Orme ◽  
Marcela Henao-Tamayo ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66310 ◽  
Author(s):  
Ciaran Skerry ◽  
Supriya Pokkali ◽  
Michael Pinn ◽  
Nicholas A. Be ◽  
Jamie Harper ◽  
...  

Elkawnie ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mashuri Masri ◽  
Cut Muthiadin ◽  
Masita Masita ◽  
Tri Cahyanto ◽  
Lianah Lianah ◽  
...  

Abstract: Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis. 10 million people suffer from TB Every year. Although TB is a preventable and treatable disease, 1.5 million people die every year due to TB. Alternative treatments continue to be pursued, and treatment with the latest TB drugs that are continuously being encouraged. Black cumin (Nigella sativa) seed contains essential oils with active compounds such as thymohydroquinone, Oleoresins, flavonoids, alkaloids, saponins, tannins, and terpenoids that act as antibacterial drugs. This study aims to determine the sensitivity of  N. sativa seed extract in inhibiting the growth of  M. tuberculosis strain H37RV and MDR-TB (Multidrug Resistance-TB). This research using Microscopic-Observation and Drug-Susceptibility Assay (MODS) method. Extraction of N. sativa was carried out by the maceration method using 70% methanol as a solvent. The results showed that the M. tuberculosis strain H37RV and MDR-TB were sensitive to N. sativa extract at concentrations of 5 and 10% but resistant to N. sativa extract at concentrations of 1 and 3%.Abstrak: Tuberkulosis (TB) adalah penyakit menular yang disebabkan oleh Bakteri Mycobacterium tuberculosis. Penyakit ini menimbulkan dampak kematian yang cukup mengkhawatirkan.  Penyakit tersebut dapat dicegah dan diobati. Salah satu sumber pengobatannya menggunakan biji jintan hitam (Nigella sativa) yang mengandung minyak atsiri dengan senyawa aktif seperti timohidrokuinon, oleoresin, flavonoid, alkaloid, saponin, tanin, dan terpenoid yang berfungsi sebagai obat antibakteri. Penelitian ini bertujuan untuk mengetahui sensitivitas ekstrak biji N. sativa dalam menghambat pertumbuhan M. tuberculosis strain H37RV and MDR-TB (Multidrug-Resistance-TB). Penelitian ini menggunakan metode Microscopic-Observation and Drug-Susceptibility Assay (MODS). Ekstraksi N. sativa dilakukan dengan metode maserasi menggunakan pelarut metanol 70%. Hasil yang diperoleh menunjukkan bahwa bakteri M. tuberculosis strain H37RV dan TB-MDR, kedua  strain tsb sensitif terhadap ekstrak N. sativa konsentrasi 5 dan 10%,  tetapi resisten terhadap  ekstrak N. sativa konsentrasi 1 dan 3%.


Sign in / Sign up

Export Citation Format

Share Document