scholarly journals Distribution of Protein Kinase C Isoforms after Infection of Macrophages with Leishmania major

1998 ◽  
Vol 66 (4) ◽  
pp. 1795-1799 ◽  
Author(s):  
Sabine Pingel ◽  
Zhi-En Wang ◽  
Richard M. Locksley

ABSTRACT We characterized the effects of Leishmania infection on activation-induced translocation of protein kinase C (PKC) isoforms in murine bone marrow-derived macrophages. Although PKC-dependent gene expression was attenuated by infection, the distribution and translocation of PKC isoforms were unaffected. However, subsequent dissociation from membranes was substantially delayed for some isoforms, particularly PKCβ.

Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 510-518 ◽  
Author(s):  
June Helen Myklebust ◽  
Erlend B. Smeland ◽  
Dag Josefsen ◽  
Mouldy Sioud

Protein kinase C (PKC) is a family of serine/threonine protein kinases involved in many cellular responses. Although the analysis of PKC activity in many systems has provided crucial insights to its biologic function, the precise role of different isoforms on the differentiation of normal hematopoietic progenitor cells into the various lineages remains to be investigated. The authors have assessed the state of activation and protein expression of PKC isoforms after cytokine stimulation of CD34+ progenitor cells from human bone marrow. Freshly isolated CD34+ cells were found to express PKC-, PKC-β2, and PKC-ɛ, whereas PKC-δ, PKC-γ, and PKC-ζ were not detected. Treatment with erythropoietin (EPO) or with EPO and stem cell factor (SCF) induced a predominantly erythroid differentiation of CD34+ cells that was accompanied by the up-regulation of PKC- and PKC-β2 protein levels (11.8- and 2.5-fold, respectively) compared with cells cultured in medium. Stimulation with EPO also resulted in the nuclear translocation of PKC- and PKC-β2 isoforms. Notably, none of the PKC isoforms tested were detectable in CD34+ cells induced to myeloid differentiation by G-CSF and SCF stimulation. The PKC inhibitors staurosporine and calphostin C prevented EPO-induced erythroid differentiation. Down-regulation of the PKC-, PKC-β2, and PKC-ɛ expression by TPA pretreatment, or the down-regulation of PKC- with a specific ribozyme, also inhibited the EPO-induced erythroid differentiation of CD34+ cells. No effect was seen with PKC-β2–specific ribozymes. Taken together, these findings point to a novel role for the PKC- isoform in mediating EPO-induced erythroid differentiation of the CD34+ progenitor cells from human bone marrow.


2004 ◽  
Vol 279 (16) ◽  
pp. 15954-15960 ◽  
Author(s):  
Bo Xu ◽  
Ashish Bhattacharjee ◽  
Biswajit Roy ◽  
Gerald M. Feldman ◽  
Martha K. Cathcart

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4162-4162
Author(s):  
Andrew A.G. Aprikyan ◽  
David Pritchard ◽  
Conrad W. Liles ◽  
Steve Schwartz ◽  
David C. Dale

Abstract G-CSF is widely used to accelerate marrow recovery after cancer chemotherapy, to facilitate collection of hematopoietic progenitor cells, and to treat severe chronic neutropenia. Although G-CSF was originally defined as a stimulus for myeloid cell proliferation, it has potent anti-apoptotic properties, affects synthesis of proteins stored in neutrophil granules, and has many other effects on cells of the myeloid lineage. To improve understanding of the molecular and cellular effects of G-CSF, particularly related to its use for the treatment of severe chronic neutropenia, we performed gene expression profile studies using Affymetrix oligonucleotide arrays and purified bone marrow cell sub-populations from normal volunteers treated with daily subcutaneous G-CSF (300 mcg/sc/qd) for five days. Under local anaesthesia, paired marrow aspirates were obtained from the posterior iliac crest before and after 5 daily doses of G-CSF. CD34+ and CD34−/CD33+ cells were purified using Miltenyi immunomagnetic beads. Two rounds of amplification of total RNA isolated from purified CD34+ or CD33+cells was used to obtain sufficient cRNA for hybridization. Expression data from scanned chips were first analyzed using the RMA algorithm. The limma package of the Bioconductor project was used to identify differentially expressed genes. Limma uses an empirical Bayes method to moderate the standard errors of the estimated log-fold changes. The statistical analysis of CD33+ cells revealed that 150 of more than 12,000 genes examined were up- or down-regulated >2-fold in response to G-CSF treatment. The top 10 genes with up- or down-regulated level of expression include clusterin, neutrophil elastase, two transcription factors, gelsolin, Grb2, phospholipase D3, protein kinase C, the major vault protein, and serine-threonine kinase. In the myeloid-committed CD34-/CD33+ progenitor cells, genes with altered expression level represent those with gene products involved in the cell cycle, regulation of apoptosis, the cytoskeleton, the inflammatory response, or serine proteases and transcription factors. Most of the genes up-regulated in CD33+ cells (e.g. neutrophil elastase, phospholipase D, protein kinase C) were down-regulated in CD34-positive cells in response to G-CSF. The results of the comparative analyses revealed the normal signature gene expression profiles for CD34+ and CD34−/CD33+ cells and identified genes that may mediate specific G-CSF effects.


2002 ◽  
Vol 103 (s2002) ◽  
pp. 276S-279S ◽  
Author(s):  
Sabine C. WOLF ◽  
Thorsten AMEND ◽  
Teut RISLER ◽  
Kerstin AMANN ◽  
Bernhard R. BREHM

Increased endothelin-1 (ET-1) levels were found in patients with chronic renal failure and these correlate with the severity of renal failure. Increased mortality due to cardiovascular problems is observed in patients with elevated ET-1 concentrations. The aim of this study was to find out the influence of ET-1 and ET receptor antagonists on myocardial protein kinase C (PKC) regulation in uraemic cardiomyopathy. Male rats were subtotally nephrectomized and treated with an ETA-receptor antagonist (30mg·kg-1·day-1, LU302146) or an ETAB-receptor antagonist (30mg·kg-1·day-1, LU302872) for 12 weeks. One group was left untreated (SNX) and one group was sham-operated (sham). Systolic blood pressure, myocardial weight and the changes of the protein kinase C isoforms in the heart were determined. PKC isoforms α and δ were investigated by Western blot analysis using specific antibodies. In the SNX group, systolic blood pressure rose to 154±5mmHg after 12 weeks. The ETA receptor antagonist prevented this increase in blood pressure, but ETAB antagonism did not. Left ventricular weight increased in SNX; this increase was inhibited by the ETA receptor antagonist. In comparison with the sham group, PKC isoform α increased by 19% in SNX animals. When the SNX animals were treated with ETA or ETAB antagonists, PKC isoform α levels decreased by 31%. PKC isoform δ levels decreased by 35% in SNX animals. Treatment with both ETA or ETAB antagonists increased PKC isoform δ levels to normal. In the myocardium of uraemic rats PKC isoforms are differentially regulated with an increase in α isoform but a decrease in δ isoform. ET receptor blockers normalize these PKC isoforms.


Physiology ◽  
2012 ◽  
Vol 27 (3) ◽  
pp. 130-139 ◽  
Author(s):  
Susan F. Steinberg

Protein kinase C (PKC) isoforms have emerged as important regulators of cardiac contraction, hypertrophy, and signaling pathways that influence ischemic/reperfusion injury. This review focuses on newer concepts regarding PKC isoform-specific activation mechanisms and actions that have implications for the development of PKC-targeted therapeutics.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lotta Pohjolainen ◽  
Julia Easton ◽  
Reesha Solanki ◽  
Heikki Ruskoaho ◽  
Virpi Talman

Background: Hypertrophy of cardiomyocytes (CMs) is initially a compensatory mechanism to cardiac overload, but when prolonged, it leads to maladaptive myocardial remodeling, impairing cardiac function and causing heart failure. A key signaling molecule involved in cardiac hypertrophy is protein kinase C (PKC). However, the role of different PKC isoforms in mediating the hypertrophic response remains controversial. Both classical (cPKC) and novel (nPKC) isoforms have been suggested to play a critical role in rodents, whereas the role of PKC in hypertrophy of human CMs remains to be determined. Here, we aimed to investigate the effects of two different types of PKC activators, the isophthalate derivative HMI-1b11 and bryostatin-1, on CM hypertrophy and to elucidate the role of cPKCs and nPKCs in endothelin-1 (ET-1)-induced hypertrophy in vitro.Methods and Results: We used neonatal rat ventricular myocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the effects of pharmacological PKC modulators and ET-1. We used quantitative reverse transcription PCR to quantify hypertrophic gene expression and high-content analysis (HCA) to investigate CM morphology. In both cell types, ET-1, PKC activation (bryostatin-1 and HMI-1b11) and inhibition of cPKCs (Gö6976) increased hypertrophic gene expression. In NRVMs, these treatments also induced a hypertrophic phenotype as measured by increased recognition, intensity and area of α-actinin and F-actin fibers. Inhibition of all PKC isoforms with Gö6983 inhibited PKC agonist-induced hypertrophy, but could not fully block ET-1-induced hypertrophy. The mitogen-activated kinase kinase 1/2 inhibitor U0126 inhibited PKC agonist-induced hypertrophy fully and ET-1-induced hypertrophy partially. While ET-1 induced a clear increase in the percentage of pro-B-type natriuretic peptide-positive hiPSC-CMs, none of the phenotypic parameters used in HCA directly correlated with gene expression changes or with phenotypic changes observed in NRVMs.Conclusion: This work shows similar hypertrophic responses to PKC modulators in NRVMs and hiPSC-CMs. Pharmacological PKC activation induces CM hypertrophy via activation of novel PKC isoforms. This pro-hypertrophic effect of PKC activators should be considered when developing PKC-targeted compounds for e.g. cancer or Alzheimer’s disease. Furthermore, this study provides further evidence on distinct PKC-independent mechanisms of ET-1-induced hypertrophy both in NRVMs and hiPSC-CMs.


Sign in / Sign up

Export Citation Format

Share Document