scholarly journals Effective and Long-Lasting Immunity against the Parasite Leishmania major in CD8-Deficient Mice

1998 ◽  
Vol 66 (8) ◽  
pp. 3968-3970 ◽  
Author(s):  
Magdalena Huber ◽  
Emma Timms ◽  
Tak W. Mak ◽  
Martin Röllinghoff ◽  
Michael Lohoff

ABSTRACT The results of earlier investigations that tested whether CD8+ T cells are required in the defense againstLeishmania major have been inconsistent. We used CD8-deficient mice to directly address this issue. After primary infection with L. major, CD8-deficient mice controlled the infection for over 1 year and mounted strong T helper 1 cell responses. Thus, CD8+ T cells are not required for the long-term control of a primary infection with L. major.

2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Junghwa Lee ◽  
Masao Hashimoto ◽  
Se Jin Im ◽  
Koichi Araki ◽  
Hyun-Tak Jin ◽  
...  

ABSTRACT Adenovirus serotype 5 (Ad5) is one of the most widely used viral vectors and is known to generate potent T cell responses. While many previous studies have characterized Ad5-induced CD8 T cell responses, there is a relative lack of detailed studies that have analyzed CD4 T cells elicited by Ad5 vaccination. Here, we immunized mice with Ad5 vectors encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) and examined GP-specific CD4 T cell responses elicited by Ad5 vectors and compared them to those induced by an acute LCMV infection. In contrast to LCMV infection, where balanced CD4 T helper 1 (Th1) and T follicular helper (Tfh) responses were induced, Ad5 immunization resulted in a significantly reduced frequency of Th1 cells. CD4 T cells elicited by Ad5 vectors expressed decreased levels of Th1 markers, such as Tim3, SLAM, T-bet, and Ly6C, had smaller amounts of cytotoxic molecules like granzyme B, and produced less interferon gamma than CD4 T cells induced by LCMV infection. This defective CD4 Th1 response appeared to be intrinsic for Ad5 vectors and not a reflection of comparing a nonreplicating vector to a live viral infection, since immunization with a DNA vector expressing LCMV-GP generated efficient CD4 Th1 responses. Analysis at early time points (day 3 or 4) after immunization with Ad5 vectors revealed a defect in the expression of CD25 (interleukin-2 [IL-2] receptor alpha chain) on Ad5-elicited CD4 T cells, and administration of exogenous IL-2 following Ad5 immunization partially restored CD4 Th1 responses. These results suggest that impairment of Th1 commitment after Ad5 immunization could be due to reduced IL-2-mediated signaling. IMPORTANCE During viral infection, generating balanced responses of Th1 and Tfh cells is important to induce effective cell-mediated responses and provide optimal help for antibody responses. In this study, to investigate vaccine-induced CD4 T cell responses, we characterized CD4 T cells after immunization with Ad5 vectors expressing LCMV-GP in mice. Ad5 vectors led to altered effector differentiation of LCMV GP-specific CD4 T cells compared to that during LCMV infection. CD4 T cells following Ad5 immunization exhibited impaired Th1 lineage commitment, generating significantly decreased Th1 responses than those induced by LCMV infection. Our results suggest that suboptimal IL-2 signaling possibly plays a role in reduced Th1 development following Ad5 immunization.


2011 ◽  
Vol 5 (09) ◽  
pp. 640-645 ◽  
Author(s):  
Mario Milco D'Elios ◽  
Marisa Benagiano ◽  
Chiara Della Bella ◽  
Amedeo Amedei

T-cell responses are crucial for the outcome of any infection. The type of effector T-cell reaction is determined by a complex interaction of antigen-presenting cells with naive T cells and involves genetic and environmental factors, including the type of antigen, cytokines, chemokines, co-stimulatory molecules, and signalling cascades. The decision for the immune response to go in a certain direction is based not on one signal alone, but rather on many different elements acting both synergistically and antagonistically, and through feedback loops leading to activation or inhibition of T cells. In the course of evolution different types of T cells have developed, such as T helper 1 (Th1) cells, which protect against intracellular bacteria; Th2 cells, which play a role against parasites; and Th17 cells, which face extracellular bacteria and fungi


2021 ◽  
Vol 10 (15) ◽  
pp. 3305
Author(s):  
Andreas Rank ◽  
Athanasia Tzortzini ◽  
Elisabeth Kling ◽  
Christoph Schmid ◽  
Rainer Claus ◽  
...  

After COVID-19, some patients develop long-term symptoms. Whether such symptoms correlate with immune responses, and how long immunity persists, is not yet clear. This study focused on mild COVID-19 and investigated correlations of immunity with persistent symptoms and immune longevity. Persistent complications, including headache, concentration difficulties and loss of smell/taste, were reported by 51 of 83 (61%) participants and decreased over time to 28% one year after COVID-19. Specific IgA and IgG antibodies were detectable in 78% and 66% of participants, respectively, at a 12-month follow-up. Median antibody levels decreased by approximately 50% within the first 6 months but remained stable up to 12 months. Neutralizing antibodies could be found in 50% of participants; specific INFgamma-producing T-cells were present in two thirds one year after COVID-19. Activation-induced marker assays identified specific T-helper cells and central memory T-cells in 80% of participants at a 12-month follow-up. In correlative analyses, older age and a longer duration of the acute phase of COVID-19 were associated with higher humoral and T-cell responses. A weak correlation between long-term loss of taste/smell and low IgA levels was found at early time points. These data indicate a long-lasting immunological memory against SARS-CoV-2 after mild COVID-19.


2021 ◽  
Vol 39 (1) ◽  
pp. 449-479
Author(s):  
Eduard Ansaldo ◽  
Taylor K. Farley ◽  
Yasmine Belkaid

The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system–microbiota interactions.


2003 ◽  
Vol 71 (12) ◽  
pp. 7215-7218 ◽  
Author(s):  
Andrea Debus ◽  
Joachim Gläsner ◽  
Martin Röllinghoff ◽  
André Gessner

ABSTRACT Myeloid differentiation protein 88 (MyD88) is a general adaptor for the signaling cascade through receptors of the Toll/IL-1R family. When infected with Leishmania major parasites, MyD88-deficient mice displayed a dramatically enhanced parasite burden in their tissues similar to that found in susceptible BALB/c mice. In contrast, MyD88 knockout mice did not develop ulcerating lesions despite a lack of interleukin-12 (IL-12) production and a predominant T helper 2 cell response. Blockade of IL-4 produced early (day 1) after infection restored a protective T helper 1 response in MyD88 knockout mice.


2001 ◽  
Vol 69 (9) ◽  
pp. 5264-5269 ◽  
Author(s):  
Linda K. Bockenstedt ◽  
Insoo Kang ◽  
Christopher Chang ◽  
David Persing ◽  
Adrian Hayday ◽  
...  

ABSTRACT Murine Lyme borreliosis, caused by infection with the spirocheteBorrelia burgdorferi, results in acute arthritis and carditis that regress as a result of B. burgdorferi-specific immune responses. B. burgdorferi-specific antibodies can attenuate arthritis in mice deficient in both B cells and T cells but have no effect on carditis. Because macrophages comprise the principal immune cell in carditis, T-cell responses that augment cell-mediated immunity may be important for carditis regression. To investigate this hypothesis, we examined the course of Lyme carditis in mice selectively deficient in B cells or αβ T cells. Our results show that carditis regresses in B-cell-deficient B10.Ak mice but not in αβ T-cell-deficient mice, independently of the mouse strain background. Despite prominent macrophage infiltrates, hearts from B. burgdorferi-infected αβ T-cell-deficient mice had less mRNA for tumor necrosis factor alpha as measured by reverse transcription-PCR compared to infected control mice. Anti-inflammatory cytokine mRNA levels were equivalent. Adoptive transfer of gamma interferon-secreting CD4+ T cells into infected αβ T-cell-deficient mice promoted carditis resolution. These results show that αβ T cells can promote resolution of murine Lyme carditis and are the first demonstration of a beneficial role for CD4+ T helper 1 cells in this disease.


2021 ◽  
Vol 10 (12) ◽  
pp. 2578
Author(s):  
Masutaka Furue ◽  
Mihoko Furue

OX40 is one of the co-stimulatory molecules expressed on T cells, and it is engaged by OX40L, primarily expressed on professional antigen-presenting cells such as dendritic cells. The OX40L–OX40 axis is involved in the sustained activation and expansion of effector T and effector memory T cells, but it is not active in naïve and resting memory T cells. Ligation of OX40 by OX40L accelerates both T helper 1 (Th1) and T helper 2 (Th2) effector cell differentiation. Recent therapeutic success in clinical trials highlights the importance of the OX40L–OX40 axis as a promising target for the treatment of atopic dermatitis.


Sign in / Sign up

Export Citation Format

Share Document