scholarly journals NF-κB1 (p50) Is Upregulated in Lipopolysaccharide Tolerance and Can Block Tumor Necrosis Factor Gene Expression

1999 ◽  
Vol 67 (4) ◽  
pp. 1553-1559 ◽  
Author(s):  
Stefan Kastenbauer ◽  
H. W. Löms Ziegler-Heitbrock

ABSTRACT Monocytes respond to lipopolysaccharide (LPS) stimulation with a rapid expression of the tumor necrosis factor (TNF) gene. Upon repeated LPS stimulation there is, however, little production of TNF mRNA and protein; i.e., the cells are tolerant to LPS. Analysis of NF-κB proteins in gel shift assays demonstrated that the DNA binding activity that is induced by LPS stimulation in tolerant cells consists mainly of p50-p50 homodimers. Since p50 can bind to DNA but lacks a transactivation domain, this may explain the blockade of TNF gene expression. We now show that in the monocytic cell line Mono Mac 6, this inability to respond can be largely ascribed to NF-κB, since a reporter construct directed by a trimeric NF-κB motif is strongly transactivated by LPS stimulation of naive cells whereas LPS-tolerant cells exhibit only low activity. Also, Western blot analyses of proteins extracted from purified nuclei showed mobilization of threefold-higher levels of p50 protein in tolerant compared to naive cells, while mobilization of p65 was unaltered. Overexpression of p50 in HEK 293 cells resulted in a strong reduction of p65-driven TNF promoter activity at the levels of both luciferase mRNA and protein. These data support the concept that an upregulation of p50 is instrumental in LPS tolerance in human monocytes.

1989 ◽  
Vol 9 (1) ◽  
pp. 252-258 ◽  
Author(s):  
J Horiguchi ◽  
D Spriggs ◽  
K Imamura ◽  
R Stone ◽  
R Luebbers ◽  
...  

The treatment of human HL-60 promyelocytic leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcript. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNF mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase A2 blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B4. In contrast, the cyclooxygenase metabolite prostaglandin E2 inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B4 and prostaglandin E2.


1989 ◽  
Vol 9 (1) ◽  
pp. 252-258
Author(s):  
J Horiguchi ◽  
D Spriggs ◽  
K Imamura ◽  
R Stone ◽  
R Luebbers ◽  
...  

The treatment of human HL-60 promyelocytic leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcript. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNF mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase A2 blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B4. In contrast, the cyclooxygenase metabolite prostaglandin E2 inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B4 and prostaglandin E2.


2003 ◽  
Vol 23 (8) ◽  
pp. 2871-2882 ◽  
Author(s):  
Juan-Jose Ventura ◽  
Norman J. Kennedy ◽  
Jennifer A. Lamb ◽  
Richard A. Flavell ◽  
Roger J. Davis

ABSTRACT The c-Jun NH2-terminal kinase (JNK) is activated by the cytokine tumor necrosis factor (TNF). This pathway is implicated in the regulation of AP-1-dependent gene expression by TNF. To examine the role of the JNK signaling pathway, we compared the effects of TNF on wild-type and Jnk1 −/− Jnk2 −/− murine embryo fibroblasts. We show that JNK is required for the normal regulation of AP-1 by TNF. The JNK-deficient cells exhibited decreased expression of c-Jun, JunD, c-Fos, Fra1, and Fra2; decreased phosphorylation of c-Jun and JunD; and decreased AP-1 DNA binding activity. The JNK-deficient cells also exhibited defects in the regulation of the AP-1-related transcription factor ATF2. These changes were associated with marked defects in TNF-regulated gene expression. The JNK signal transduction pathway is therefore essential for AP-1 transcription factor regulation in cells exposed to TNF.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4263-4268
Author(s):  
Per Ole Iversen ◽  
Mouldy Sioud

The human cytokines tumor necrosis factor  (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) both promote growth and survival of malignant cells from children with juvenile myelomonocytic leukemia (JMML). It has been postulated that TNF stimulates GM-CSF gene expression in an autocrine manner. We found here that the specific inhibition of TNF gene expression by a catalytic RNA molecule (ribozyme) also downregulated the expression of GM-CSF in JMML cells. GM-CSF protein, GM-CSF–dependent colony formation, and viability of JMML cells were reduced. The observed effect was specific, because synthesis of interleukin-1β, another cytokine produced by JMML cells, was not affected by the ribozyme treatment. The stimulatory effect of TNF on GM-CSF gene expression in JMML cells probably takes place at the transcription level, because the ribozyme treatment decreased GM-CSF mRNA. No apparent toxicity of the ribozyme was detected in normal bone marrow progenitor cells. Thus, the inhibition of TNF gene expression in JMML cells by ribozymes may be a novel therapeutic approach for this disorder.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4263-4268 ◽  
Author(s):  
Per Ole Iversen ◽  
Mouldy Sioud

Abstract The human cytokines tumor necrosis factor  (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) both promote growth and survival of malignant cells from children with juvenile myelomonocytic leukemia (JMML). It has been postulated that TNF stimulates GM-CSF gene expression in an autocrine manner. We found here that the specific inhibition of TNF gene expression by a catalytic RNA molecule (ribozyme) also downregulated the expression of GM-CSF in JMML cells. GM-CSF protein, GM-CSF–dependent colony formation, and viability of JMML cells were reduced. The observed effect was specific, because synthesis of interleukin-1β, another cytokine produced by JMML cells, was not affected by the ribozyme treatment. The stimulatory effect of TNF on GM-CSF gene expression in JMML cells probably takes place at the transcription level, because the ribozyme treatment decreased GM-CSF mRNA. No apparent toxicity of the ribozyme was detected in normal bone marrow progenitor cells. Thus, the inhibition of TNF gene expression in JMML cells by ribozymes may be a novel therapeutic approach for this disorder.


Sign in / Sign up

Export Citation Format

Share Document