scholarly journals Citrobacter freundii Invades and Replicates in Human Brain Microvascular Endothelial Cells

1999 ◽  
Vol 67 (8) ◽  
pp. 4208-4215 ◽  
Author(s):  
Julie L. Badger ◽  
Monique F. Stins ◽  
Kwang Sik Kim

ABSTRACT Neonatal bacterial meningitis remains a disease with unacceptable rates of morbidity and mortality despite the availability of effective antimicrobial therapy. Citrobacter spp. cause neonatal meningitis but are unique in their frequent association with brain abscess formation. The pathogenesis of Citrobacter spp. causing meningitis and brain abscess is not well characterized; however, as with other meningitis-causing bacteria (e.g.,Escherichia coli K1 and group B streptococci), penetration of the blood-brain barrier must occur. In an effort to understand the pathogenesis of Citrobacter spp. causing meningitis, we have used the in vitro blood-brain barrier model of human brain microvascular endothelial cells (HBMEC) to study the interaction between C. freundii and HBMEC. In this study, we show thatC. freundii is capable of invading and trancytosing HBMEC in vitro. Invasion of HBMEC by C. freundii was determined to be dependent on microfilaments, microtubules, endosome acidification, and de novo protein synthesis. Immunofluorescence microscopy studies revealed that microtubules aggregated after HBMEC came in contact with C. freundii; furthermore, the microtubule aggregation was time dependent and seen with C. freundii but not with noninvasive E. coli HB101 and meningitic E. coli K1. Also in contrast to other meningitis-causing bacteria, C. freundii is able to replicate within HBMEC. This is the first demonstration of a meningitis-causing bacterium capable of intracellular replication within BMEC. The important determinants of the pathogenesis of C. freundii causing meningitis and brain abscess may relate to invasion of and intracellular replication in HBMEC.

2010 ◽  
Vol 78 (8) ◽  
pp. 3554-3559 ◽  
Author(s):  
Longkun Zhu ◽  
Donna Pearce ◽  
Kwang Sik Kim

ABSTRACT Escherichia coli meningitis is an important cause of mortality and morbidity, and a key contributing factor is our incomplete understanding of the pathogenesis of E. coli meningitis. We have shown that E. coli penetration into the brain requires E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. E. coli invasion of HBMEC involves its interaction with HBMEC receptors, such as E. coli cytotoxic necrotizing factor 1 (CNF1) interaction with its receptor, the 67-kDa laminin receptor (67LR), and host signaling molecules including cytosolic phospholipase A2α (cPLA2α). In the present study, we showed that treatment with etoposide resulted in decreased expression of 67LR on HBMEC and inhibited E. coli invasion of HBMEC. Pharmacological inhibition of cysteinyl leukotrienes, lipoxygenated products of arachidonic acid released by cPLA2α, using montelukast (an antagonist of the type 1 cysteinyl leukotriene receptor) also inhibited E. coli invasion of HBMEC. E. coli penetration into the brain was significantly decreased by etoposide as well as by montelukast, and a combination of etoposide and montelukast was significantly more effective in inhibiting E. coli K1 invasion of HBMEC than single agents alone. These findings demonstrate for the first time that counteracting the HBMEC receptor and signaling molecule involved in E. coli invasion of HBMEC provides a novel approach for prevention of E. coli penetration into the brain, the essential step required for development of E. coli meningitis.


2021 ◽  
Author(s):  
Pasquale Mone ◽  
Jessica Gambardella ◽  
Xujun Wang ◽  
Stanislovas S. Jankauskas ◽  
Alessandro Matarese ◽  
...  

Abstract Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro blood–brain barrier model.


2012 ◽  
Vol 80 (6) ◽  
pp. 2035-2041 ◽  
Author(s):  
Ravi Maruvada ◽  
Kwang Sik Kim

ABSTRACTMeningitis-causingEscherichia coliK1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved inE. colientry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causingE. coliK1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not β-Pix, was involved inE. coliK1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined inE. coliK1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreasedE. coliinvasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response toE. coliis under the control of STAT3. More importantly, twoE. colideterminants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specificE. colideterminants regulate a novel mechanism of STAT3 cross talk with Rac1 inE. coliK1 invasion of HBMEC.


2007 ◽  
Vol 56 (8) ◽  
pp. 1110-1115 ◽  
Author(s):  
Abdul Matin ◽  
Ruqaiyyah Siddiqui ◽  
Suk-Yul Jung ◽  
Kwang Sik Kim ◽  
Monique Stins ◽  
...  

Balamuthia amoebic encephalitis (BAE) is a serious human disease almost always leading to death. An important step in BAE is amoebae invasion of the bloodstream, followed by their haematogenous spread. Balamuthia mandrillaris entry into the central nervous system most likely occurs at the blood–brain barrier sites. Using human brain microvascular endothelial cells (HBMECs), which constitute the blood–brain barrier, this study determined (i) the ability of B. mandrillaris to bind to HBMECs and (ii) the associated molecular mechanisms. Adhesion assays revealed that B. mandrillaris exhibited greater than 90 % binding to HBMECs in vitro. To determine whether recognition of carbohydrate moieties on the surface of the HBMECs plays a role in B. mandrillaris adherence to the target cells, adhesion assays were performed in the presence of the saccharides mannose, galactose, xylose, glucose and fucose. It was observed that adherence of B. mandrillaris was significantly reduced by galactose, whilst the other saccharides had no effect. Acetone fixation of amoebae, but not of HBMECs, abolished adhesion, suggesting that B. mandrillaris adhesin(s) bind to galactose-containing glycoproteins of HBMECs. B. mandrillaris also bound to microtitre wells coated with galactose–BSA. By affinity chromatography using a galactose–Sepharose column, a galactose-binding protein (GBP) was isolated from detergent extracts of unlabelled amoebae. The isolation of a GBP from cell-surface-biotin-labelled amoebae suggested its membrane association. One-dimensional SDS-PAGE confirmed the proteinaceous nature of the GBP and determined its molecular mass as approximately 100 kDa. This is the first report suggesting the role of a GBP in B. mandrillaris interactions with HBMECs.


Author(s):  
Lorena Gárate-Vélez ◽  
Claudia Escudero-Lourdes ◽  
Daniela Salado-Leza ◽  
Armando González-Sánchez ◽  
Ildemar Alvarado-Morales ◽  
...  

Background: Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. Objective: To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. Methods: Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. Results: The miFe3O4 NPs, with a mean diameter of 8.45 ± 0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). Conclusion: Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.


2000 ◽  
Vol 68 (11) ◽  
pp. 6423-6430 ◽  
Author(s):  
Marpadga A. Reddy ◽  
Carol A. Wass ◽  
Kwang Sik Kim ◽  
David D. Schlaepfer ◽  
Nemani V. Prasadarao

ABSTRACT Escherichia coli K1 traversal across the blood-brain barrier is an essential step in the pathogenesis of neonatal meningitis. We have previously shown that invasive E. colipromotes the actin rearrangement of brain microvascular endothelial cells (BMEC), which constitute a lining of the blood-brain barrier, for invasion. However, signal transduction mechanisms involved in E. coli invasion are not defined. In this report we show that tyrosine kinases play a major role in E. coli invasion of human BMEC (HBMEC). E. coli induced tyrosine phosphorylation of HBMEC cytoskeletal proteins, focal adhesion kinase (FAK), and paxillin, with a concomitant increase in the association of paxillin with FAK. Overexpression of a dominant interfering form of the FAK C-terminal domain, FRNK (FAK-related nonkinase), significantly inhibited E. coli invasion of HBMEC. Furthermore, we found that FAK kinase activity and the autophosphorylation site (Tyr397) are important in E. coli invasion of HBMEC, whereas the Grb2 binding site (Tyr925) is not required. Immunocytochemical studies demonstrated that FAK is recruited to focal plaques at the site of bacterial entry. Consistent with the invasion results, overexpression of FRNK, a kinase-negative mutant (Arg454 FAK), and a Src binding mutant (Phe397 FAK) inhibited the accumulation of FAK at the bacterial entry site. The overexpression of FAK mutants in HBMEC also blocked theE. coli-induced tyrosine phosphorylation of FAK and its association with paxillin. These observations provide evidence that FAK tyrosine phosphorylation and its recruitment to the cytoskeleton play a key role in E. coli invasion of HBMEC.


1999 ◽  
Vol 67 (3) ◽  
pp. 1131-1138 ◽  
Author(s):  
Nemani V. Prasadarao ◽  
Carol A. Wass ◽  
Sheng-He Huang ◽  
Kwang Sik Kim

ABSTRACT The molecular basis of Escherichia coli traversal of the blood-brain barrier in the development of E. colimeningitis is not well understood. We have previously shown that a novel Ibe10 protein found in cerebrospinal fluid isolates of E. coli is necessary for invasion of the brain microvascular endothelial cells (BMEC) that constitute the blood-brain barrier both in vitro and in a newborn rat model of hematogenous meningitis. Here we identified a novel Ibe10 binding molecule/receptor (Ibe10R) on both bovine BMEC (HBMEC) and human BMEC (HBMEC) that is responsible for invasion by E. coli. Ibe10R, an approximately 55-kDa protein, was purified from BBMEC by Ibe10-Ni-Sepharose affinity chromatography. Bovine Ibe10R, as well as polyclonal antibodies to Ibe10R, blocked E. coli invasion of BBMEC very effectively. The N-terminal amino acid sequence of Ibe10R showed 75% homology to serum albumin. However, the amino acid sequence of an Ibe10R fragment generated by limited enzymatic digestion did not reveal homology to any other proteins, suggesting that Ibe10R represents a novel albumin-like protein. Immunocytochemical analysis of BBMEC using anti-Ibe10R antibody suggested that only a subset of cultured BBMEC express Ibe10R on their surface. Enrichment of Ibe10R-positive BBMEC by fluorescence-activated cell sorting with anti-Ibe10R antibody resulted in enhanced invasion by E. coli. The anti-Ibe10R antibody raised against bovine Ibe10R also blocked E. coli invasion of HBMEC very effectively. Interestingly, anti-Ibe10R antibody affinity chromatography of HBMEC membrane proteins revealed a smaller protein with an approximate molecular mass of 45 kDa. These results suggest that the Ibe10 of E. coli interacts with a novel BMEC surface protein, Ibe10R, for invasion of both BBMEC and HBMEC.


1998 ◽  
Vol 66 (12) ◽  
pp. 5692-5697 ◽  
Author(s):  
Julie L. Badger ◽  
Kwang Sik Kim

ABSTRACT A major limitation to advances in prevention and therapy of neonatal meningitis is our incomplete understanding of the pathogenesis of this disease. In an effort to understand the pathogenesis of meningitis due to Escherichia coli K1, we examined whether environmental growth conditions similar to those that the bacteria might be exposed to in the blood could influence the ability ofE. coli K1 to invade brain microvascular endothelial cells (BMEC) in vitro and to cross the blood-brain barrier in vivo. We found that the following bacterial growth conditions enhanced E. coli K1 invasion of BMEC 3- to 10-fold: microaerophilic growth, media buffered at pH 6.5, and media supplemented with 50% newborn bovine serum (NBS), magnesium, or iron. Growth conditions that significantly repressed invasion (i.e., 2- to 250-fold) included iron chelation, a pH of 8.5, and high osmolarity. More importantly, E. coli K1 traversal of the blood-brain barrier was significantly greater for the growth condition enhancing BMEC invasion (50% NBS) than for the condition repressing invasion (osmolarity) in newborn rats with experimental hematogenous meningitis. Of interest, bacterial growth conditions that enhanced or repressed invasion also elicited similar serum resistance phenotype patterns. This is the first demonstration that bacterial ability to enter the central nervous system can be affected by environmental growth conditions.


Sign in / Sign up

Export Citation Format

Share Document