IbeA and OmpA of Escherichia coli K1 Exploit Rac1 Activation for Invasion of Human Brain Microvascular Endothelial Cells
ABSTRACTMeningitis-causingEscherichia coliK1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved inE. colientry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causingE. coliK1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not β-Pix, was involved inE. coliK1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined inE. coliK1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreasedE. coliinvasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response toE. coliis under the control of STAT3. More importantly, twoE. colideterminants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specificE. colideterminants regulate a novel mechanism of STAT3 cross talk with Rac1 inE. coliK1 invasion of HBMEC.