scholarly journals Regulation of Protein Phosphorylation and Pathogen Phagocytosis by Surfactant Protein A

1999 ◽  
Vol 67 (9) ◽  
pp. 4693-4699 ◽  
Author(s):  
Trista L. Schagat ◽  
Michael James Tino ◽  
Jo Rae Wright

ABSTRACT Surfactant protein A (SP-A), a pulmonary member of the collectin family of proteins, facilitates the rapid clearance of pathogens by upregulating immune cell functions in the lungs. SP-A binds to bacteria and targets them for rapid phagocytosis by alveolar macrophages, but the mechanism by which this stimulation occurs is not clear. To characterize the intracellular events that may be involved, we examined the roles of protein phosphorylation and cytoskeletal polymerization in SP-A-stimulated phagocytosis. In rat alveolar macrophages, SP-A stimulated rapid tyrosine phosphorylation of specific proteins in a dose- and time-dependent manner. The pattern of proteins that were phosphorylated in response to SP-A, as resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was similar to that observed for immunoglobulin G (IgG)-stimulated macrophages. Both SP-A and IgG stimulated increases in phagocytosis of Streptococcus pneumoniae above levels in the absence of added protein by 394% ± 81% and 200% ± 25%, respectively. Phagocytosis in both cases was dependent on tyrosine kinases, protein kinase C, and actin polymerization but not on microtubule activity. These studies show that SP-A utilizes pathways similar to those used by IgG to increase macrophage phagocytosis of bacteria.

1992 ◽  
Vol 286 (1) ◽  
pp. 5-8 ◽  
Author(s):  
J F Van Iwaarden ◽  
H Shimizu ◽  
P H M Van Golde ◽  
D R Voelker ◽  
L M G Van Golde

Rat surfactant protein D (SP-D) was shown to enhance the production of oxygen radicals by rat alveolar macrophages. This enhancement, which was determined by a lucigenin-dependent chemiluminescence assay, was maximal after 18 min at an SP-D concentration of 0.2 micrograms/ml. Surfactant lipids did not influence the stimulation of alveolar macrophages by SP-D, whereas the oxygen-radical production of these cells induced by surfactant protein A was inhibited by the lipids in a concentration-dependent manner.


2005 ◽  
Vol 73 (5) ◽  
pp. 2828-2834 ◽  
Author(s):  
T. R. Kannan ◽  
D. Provenzano ◽  
J. R. Wright ◽  
J. B. Baseman

ABSTRACT Mycoplasma pneumoniae infections represent a major primary cause of human respiratory diseases, exacerbate other respiratory disorders, and are associated with extrapulmonary pathologies. Cytadherence is a critical step in mycoplasma colonization, aided by a network of mycoplasma adhesins and cytadherence accessory proteins which mediate binding to host cell receptors. Furthermore, the respiratory mucosa is enriched with extracellular matrix components, including surfactant proteins, fibronectin, and mucin, which provide additional in vivo targets for mycoplasma parasitism. In this study we describe interactions between M. pneumoniae and human surfactant protein-A (hSP-A). Initially, we found that viable M. pneumoniae cells bound to immobilized hSP-A in a dose- and calcium (Ca2+)-dependent manner. Mild trypsin treatment of intact mycoplasmas reduced binding markedly (80 to 90%) implicating a surface-associated mycoplasma protein(s). Using hSP-A-coupled Sepharose affinity chromatography and polyacrylamide gel electrophoresis, we identified a 65-kDa hSP-A binding protein of M. pneumoniae. The presence of Ca2+ enhanced binding of the 65-kDa protein to hSP-A, which was reduced by the divalent cation-chelating agent, EDTA. The 65-kDa hSP-A binding protein of M. pneumoniae was identified by sequence analysis as a novel protein (MPN372) possessing a putative S1-like subunit of pertussis toxin at the amino terminus (amino acids 1 to 226), with the remaining amino acids (227 to 591) exhibiting no homology with other subunits of pertussis toxin, other known toxins, or any reported proteins. Recombinant MPN372 (MPN372) bound to hSP-A in a dose-dependent manner, which was markedly reduced by preincubation with mouse recombinant MPN372 antisera. Also, adherence of viable M. pneumoniae cells to hSP-A was inhibited by recombinant MPN372 antisera, demonstrating that MPN372, a previously designated hypothetical protein, is surface exposed and mediates mycoplasma attachment to hSP-A.


1995 ◽  
Vol 309 (2) ◽  
pp. 551-555 ◽  
Author(s):  
J F van Iwaarden ◽  
F Teding van Berkhout ◽  
J A Whitsett ◽  
R S Oosting ◽  
L M G van Golde

Previous studies have shown that surfactant protein A (SP-A) derived from alveolar-proteinosis patients activates rat alveolar macrophages. However, it is not known if normal rat, dog and human SP-A can also stimulate alveolar macrophages. As alveolar-proteinosis SP-A has a slightly different structure from ordinary SP-A, it would be possible that the ascribed alveolar-macrophage-stimulating properties of SP-A are restricted to alveolar-proteinosis SP-A. To clarify this issue, we isolated SP-A from normal rat and dog pulmonary surfactants, using the same isolation technique commonly used for the isolation of alveolar-proteinosis SP-A, i.e. by butanol precipitation. In contrast with human alveolar-proteinosis SP-A, rat and dog SP-A obtained thus could not activate rat alveolar macrophages to produce oxygen radicals or enhance the phagocytosis of fluorescein isothiocyanate-labelled herpes simplex virus. However, rat, dog and normal human SP-A isolated by a novel method, involving extraction from pulmonary surfactant by using n-octyl beta-D-glucopyranoside and subsequent purification by cation-exchange chromatography, were able to elicit an oxidative burst in rat as well as normal human alveolar macrophages. In addition, dog and rat SP-A obtained thus stimulated the phagocytosis of herpes simplex virus by rat alveolar macrophages. These findings indicate that normal human, rat and dog SP-A have the same alveolar-macrophage-stimulating properties as human alveolar proteinosis SP-A. Dog and rat SP-A isolated by this novel method had the same Ca(2+)-dependent self-aggregation and lipid-aggregation properties as SP-A isolated by butanol precipitation. The new and milder isolation procedure yielded SP-A of high purity, as judged by SDS/PAGE and ELISA.


1999 ◽  
Vol 276 (4) ◽  
pp. L650-L658 ◽  
Author(s):  
Jo Rae Wright ◽  
Daniel F. Zlogar ◽  
Julie C. Taylor ◽  
Thomas M. Zlogar ◽  
Clara I. Restrepo

Surfactant protein (SP) A and SP-D affect numerous functions of immune cells including enhancing phagocytosis of bacteria and production of reactive species. Previous studies have shown that SP-A and SP-D bind to a variety of bacteria and to the lipopolysaccharide (LPS) components of their cell walls. In addition, purified preparations of SPs often contain endotoxin. The goals of this study were 1) to evaluate the effects of SP-A and SP-D and complexes of SPs and LPS on the production of nitric oxide metabolites by rat alveolar macrophages and 2) to evaluate methods for the removal of endotoxin with optimal recovery of SP. Incubation of SP-A or SP-D with polymyxin, 100 mM N-octyl-β-d-glucopyranoside, and 2 mM EDTA followed by dialysis was the most effective method of those tested for reducing endotoxin levels. Commonly used storage buffers for SP-D, but not for SP-A, inhibited the detection of endotoxin. There was a correlation between the endotoxin content of the SP-A and SP-D preparations and their ability to stimulate production of nitrite by alveolar macrophages. SP-A and SP-D treated as described above to remove endotoxin did not stimulate nitrite production. These studies suggest that the functions of SP-A and SP-D are affected by endotoxin and illustrate the importance of monitoring SP preparations for endotoxin contamination.


1991 ◽  
Vol 260 (4) ◽  
pp. L226-L233 ◽  
Author(s):  
A. B. Fisher ◽  
I. Arad ◽  
C. Dodia ◽  
A. Chander ◽  
S. I. Feinstein

Synthesis and secretion of surfactant-associated protein were studied in isolated rat lungs perfused with [3H]phenylalanine or [35S]methionine in synthetic medium. Surfactant was isolated by lung lavage and density-gradient centrifugation followed by dialysis to remove unincorporated amino acid and extraction with ethanol-ether to yield a delipidated protein fraction. Incorporation of [3H]phenylalanine into the delipidated surfactant protein fraction showed a lag phase of approximately 3 h followed by progressive increase over the next 3 h at a rate of 1.6 nmol.mg protein-1.h-1. With 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP, 0.1 mM) added to the perfusate, the incorporation rate between 3 and 6 h was increased by 75%. 3H specific activity in a delipidated lamellar body-rich fraction isolated from lung homogenates was unchanged by 8-BrcAMP at 3 h but was increased by 45% at 6 h. The major peak of radioactivity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of surfactant and lamellar bodies corresponded to proteins of 27–36 kDa that were identified as surfactant protein A (SP-A) by immunoblot. In the presence of 8-BrcAMP during 6 h of perfusion, specific activity of 35S-labeled SP-A in immunoprecipitated protein was increased by 93% and the SP-A mRNA content of lung was increased 145%. These results show that isolated perfused lungs synthesize and secrete surfactant-associated proteins and that the presence of a permeable cAMP analogue in the lung perfusate leads to increased secretion followed by induction of synthesis for SP-A.


2005 ◽  
Vol 288 (1) ◽  
pp. L150-L158 ◽  
Author(s):  
Anatoly N. Mikerov ◽  
Todd M. Umstead ◽  
Weixiong Huang ◽  
Wenlei Liu ◽  
David S. Phelps ◽  
...  

Chronic airway inflammation caused by Pseudomonas aeruginosa is an important feature of cystic fibrosis (CF). Surfactant protein A (SP-A) enhances phagocytosis of P. aeruginosa. Two genes, SP-A1 and SP-A2, encode human SP-A. We hypothesized that genetically determined differences in the activity of SP-A1 and SP-A2 gene products exist. To test this, we studied association of a nonmucoid P. aeruginosa strain (ATCC 39018) with rat alveolar macrophages in the presence or absence of insect cell-expressed human SP-A variants. We used two trios, each consisting of SP-A1, SP-A2, and their coexpressed SP-A1/SP-A2 variants. We tested the 6A2and 6A4alleles (for SP-A1), the 1A0and 1A alleles (for SP-A2), and their respective coexpressed SP-A1/SP-A2 gene products. After incubation of alveolar macrophages with P. aeruginosa in the presence of the SP-A variants at 37°C for 1 h, the cell association of bacteria was assessed by light microscopy analysis. We found 1) depending on SP-A concentration and variant, SP-A2 variants significantly increased the cell association more than the SP-A1 variants (the phagocytic index for SP-A1 was ∼52–95% of the SP-A2 activity); 2) coexpressed variants at certain concentrations were more active than single gene products; and 3) the phagocytic index for SP-A variants was ∼18–41% of the human SP-A from bronchoalveolar lavage. We conclude that human SP-A variants in vitro enhance association of P. aeruginosa with rat alveolar macrophages differentially and in a concentration-dependent manner, with SP-A2 variants having a higher activity compared with SP-A1 variants.


2005 ◽  
Vol 289 (6) ◽  
pp. L1011-L1018 ◽  
Author(s):  
Deepika Jain ◽  
Chandra Dodia ◽  
Aron B. Fisher ◽  
Sandra R. Bates

Uptake and degradation of 125I-surfactant protein A (SP-A) over a 1-h period was studied in alveolar cells in culture and in isolated perfused lungs to elucidate the mechanism for clearance of the protein from the alveolar space. Specific inhibitors of clathrin- and actin-dependent endocytosis were utilized. In type II cells, uptake of SP-A, compared with controls, was decreased by 60% on incubation with clathrin inhibitors (amantadine and phenylarsine oxide) or with the actin inhibitor cytochalasin D. All agents reduced SP-A metabolism by alveolar macrophages. Untreated rat isolated perfused lungs internalized 36% of instilled SP-A, and 56% of the incorporated SP-A was degraded. Inhibitors of clathrin and actin significantly reduced SP-A uptake by ∼54%, whereas cytochalasin D inhibited SP-A degradation. Coincubation of agents did not produce an additive effect on uptake of SP-A by cultured pneumocytes or isolated perfused lungs, indicating that all agents affected the same pathway. Thus SP-A clears the lung via a clathrin-mediated pathway that requires the polymerization of actin.


2004 ◽  
Vol 48 (2) ◽  
pp. 546-555 ◽  
Author(s):  
Katussevani Bernardo ◽  
Norbert Pakulat ◽  
Silke Fleer ◽  
Annabelle Schnaith ◽  
Olaf Utermöhlen ◽  
...  

ABSTRACT The influence of the antibiotic linezolid on the secretion of exotoxins by Staphylococcus aureus was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry and Western blot analysis. S. aureus suspensions were treated with grading subinhibitory concentrations of linezolid (12.5, 25, 50, and 90% of MIC) at different stages of bacterial growth (i.e., an optical density at 540 nm [OD540] of 0.05 or 0.8). When added to S. aureus cultures at an OD540 of 0.05, linezolid reduced in a dose-dependent manner the secretion of specific virulence factors, including staphylococcal enterotoxin A (SEA) and SEB, bifunctional autolysin, autolysin, protein A, and alpha- and beta-hemolysins. In contrast, other presumably nontoxic exoproteins remained unchanged or even accumulated in supernatants in the presence of linezolid at a 90% MIC. Similarily, when added at OD540 of 0.8, that is, after quorum sensing, linezolid reduced the release of virulence factors, whereas the relative abundance of nontoxic exoproteins such as triacylglycerol lipase, glycerol ester hydrolase, DnaK, or translation elongation factor EF-Tu was found to be increased. Consistently, linezolid reduced in a dose-dependent manner the tumor necrosis factor-inducing activity secreted by S. aureus into the culture supernatants. The results of our study suggest that the expression of virulence factors in S. aureus is especially sensitive to the inhibition of protein synthesis by linezolid, which should be an advantage in the treatment of infections with toxin-producing S. aureus.


Sign in / Sign up

Export Citation Format

Share Document