scholarly journals Invasion of Human Vascular Endothelial Cells byActinobacillus actinomycetemcomitans via the Receptor for Platelet-Activating Factor

2000 ◽  
Vol 68 (9) ◽  
pp. 5416-5419 ◽  
Author(s):  
Harvey A. Schenkein ◽  
Suzanne E. Barbour ◽  
C. R. Berry ◽  
Barbara Kipps ◽  
John G. Tew

ABSTRACT Strains of the periodontal pathogen Actinobacillus actinomycetemcomitans are variable with respect to display of phosphorylcholine (PC)-bearing antigens. We have examined strains ofA. actinomycetemcomitans with and without PC to assess their ability to invade endothelial cells via the receptor for platelet-activating factor (PAF). Results of antibiotic protection assays indicate that PC-bearing A. actinomycetemcomitansinvade human vascular endothelial cells by a mechanism inhibitable by CV3988, a PAF receptor antagonist, and by PAF itself. The invasive phenotype was verified by transmission electron microscopy. A PC-deficient strain of this organism was not invasive. This property, in addition to the established ability of A. actinomycetemcomitans to invade epithelial cells, may provide this organism with access to the systemic circulation. The ability of PC-bearing oral bacteria to access the circulation may also explain the elevated levels of anti-PC antibody in serum found in patients with periodontitis.

Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2334-2340
Author(s):  
Gian Carlo Avanzi ◽  
Margherita Gallicchio ◽  
Flavia Bottarel ◽  
Loretta Gammaitoni ◽  
Giuliana Cavalloni ◽  
...  

GAS6 is a ligand for the tyrosine kinase receptors Rse, Axl, and Mer, but its function is poorly understood. Previous studies reported that both GAS6 and Axl are expressed by vascular endothelial cells (EC), which play a key role in leukocyte extravasation into tissues during inflammation through adhesive interactions with these cells. The aim of this work was to evaluate the GAS6 effect on the adhesive function of EC. Treatment of EC with GAS6 significantly inhibited adhesion of polymorphonuclear cells (PMN) induced by phorbol 12-myristate 13-acetate (PMA), platelet-activating factor (PAF), thrombin, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not that induced by FMLP and IL-8. GAS6 did not affect adhesion to resting EC. Titration experiments showed that high concentrations of GAS6 were needed to inhibit PMN adhesion and that inhibition was dose-dependent at the concentration range of 0.1 to 1 μg/mL. One possibility was that high concentrations were needed to overwhelm the effect of endogenous GAS6 produced by EC. In line with this possibility, treatment of resting EC with soluble Axl significantly potentiated PMN adhesion. Analysis of localization of GAS6 by confocal microscopy and cytofluorimetric analysis showed that it is concentrated along the plasma membrane in resting EC and treatment with PAF induces depletion and/or redistribution of the molecule. These data suggest that GAS6 functions as a physiologic antiinflammatory agent produced by resting EC and depleted when proinflammatory stimuli turn on the proadhesive machinery of EC.


1997 ◽  
Vol 273 (2) ◽  
pp. G342-G347
Author(s):  
H. Ichikawa ◽  
R. E. Wolf ◽  
T. Y. Aw ◽  
N. Ohno ◽  
L. Coe ◽  
...  

Oxidants generated by endothelial xanthine oxidase (XO) can help trigger free radical-mediated tissue injury. An important event in oxidant-mediated tissue injury is neutrophil-endothelial adhesion. Although activation of endothelial XO increases adhesion, little is known about xanthine in the adhesive effect of XO. This study examined administered xanthine on the adhesion of neutrophils. Endothelial [human umbilical vein endothelial cells (HUVEC)] monolayers were exposed to xanthine (15 min), and neutrophils were allowed to adhere to HUVEC in an adhesion assay. Adhesion was dose dependently increased by xanthine (3-100 microM). Either catalase (1,000 U/ml), oxypurinol (XO inhibitor; 100 microM), or platelet-activating factor (PAF) receptor antagonist (WEB 2086; 10 microM) reduced neutrophil adhesion. Superoxide dismutase (1,000 U/ml) had no effect. Pretreatment of HUVEC with 50 microM tungsten also blocked xanthine-induced adherence. Adhesion was also inhibited by preincubation with 100 U/ml heparin. Finally, anti-P-selectin antibody (PB1.3; 20 micrograms/ml) attenuated adhesion. Our results indicate that xanthine may promote neutrophil-endothelial adhesion via a hydrogen peroxide- and PAF-mediated P-selectin expression.


1991 ◽  
Vol 115 (1) ◽  
pp. 223-234 ◽  
Author(s):  
D E Lorant ◽  
K D Patel ◽  
T M McIntyre ◽  
R P McEver ◽  
S M Prescott ◽  
...  

The adhesion of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC) is an early and fundamental event in acute inflammation. This process requires the regulated expression of molecules on both the EC and PMN. EC stimulated with histamine or thrombin coexpress two proadhesive molecules within minutes: granule membrane protein 140 (GMP-140), a member of the selectin family, and platelet-activating factor (PAF), a biologically active phospholipid. Coexpression of GMP-140 and PAF is required for maximal PMN adhesion and the two molecules act in a cooperative fashion. The component of adhesion mediated by EC-associated PAF requires activation of CD11/CD18 integrins on the PMN and binding of these heterodimers to counterreceptors on the EC. GMP-140 also binds to a receptor on the PMN; however, it tethers the PMN to the EC without requiring activation of CD11/CD18 integrins. This component of the adhesive interaction is blocked by antibodies to GMP-140 or by GMP-140 in the fluid phase. Experiments with purified GMP-140 indicate that binding to its receptor on the PMN does not directly induce PMN adhesiveness but that it potentiates the CD11/CD18-dependent adhesive response to PAF by a mechanism that involves events distal to the PAF receptor. Tethering of the PMN to the EC by GMP-140 may also be required for efficient interaction of PAF with its receptor on the PMN. These observations define a complex cell recognition system in which tethering of PMNs by a selectin, GMP-140, facilitates juxtacrine activation of the leukocytes by a signaling molecule, PAF. The latter event recruits the third component of the adhesive interaction, the CD11/CD18 integrins.


1987 ◽  
Vol 166 (5) ◽  
pp. 1390-1404 ◽  
Author(s):  
G Camussi ◽  
F Bussolino ◽  
G Salvidio ◽  
C Baglioni

Murine tumor necrosis factor (mTNF) stimulates production of platelet-activating factor (PAF) by cultured rat peritoneal macrophages in amounts comparable to those formed during treatment with the calcium ionophore A23187 or phagocytosis of zymosan. The cell-associated PAF that was released into the medium was identical to synthetic PAF, as determined with physicochemical, chromatographic, and enzymatic assays. Furthermore, de novo synthesis of PAF by macrophages was demonstrated by the incorporation of radioactive precursors such as [3H]acetyl-coenzyme A or [3H]2-lyso-PAF. Macrophages incubated with mTNF for 4 h synthesized PAF only during the first h of treatment. At this time, the amount of cell-associated PAF was approximately equal to that released into the medium. The cell-associated PAF decreased afterwards, whereas that in the medium did not correspondingly increase, suggesting that some PAF was being degraded. The response of rat macrophages to different doses of mTNF and human TNF (hTNF) was examined. Maximal synthesis of PAF was obtained with 10 ng/ml of mTNF and 50 ng/ml of hTNF. This finding may be explained by a lower affinity of hTNF for TNF receptors of rat cells. The hTNF stimulated production of PAF by human vascular endothelial cells cultured from the umbilical cord vein. The time course of PAF synthesis was slower than that observed with macrophages, with maximal production between 4 and 6 h of treatment. Optimal synthesis of PAF was obtained with 10 ng/ml of hTNF. Only 20-30% of the PAF synthesized by endothelial cells was released into the medium, even after several hours of incubation. Synthesis of PAF in response to TNF was also detected in rat polymorphonuclear neutrophils, but not in human tumor cells and dermal fibroblasts. Therefore, production of PAF is a specialized response that is transient in macrophages continuously treated with TNF, and that appears to be controlled by unidentified regulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document