scholarly journals Toxoplasma gondii Induces Granulocyte Colony-Stimulating Factor and Granulocyte-Macrophage Colony-Stimulating Factor Secretion by Human Fibroblasts: Implications for Neutrophil Apoptosis

2002 ◽  
Vol 70 (11) ◽  
pp. 6048-6057 ◽  
Author(s):  
Jacqueline Y. Channon ◽  
Kristin A. Miselis ◽  
Laurie A. Minns ◽  
Chaitali Dutta ◽  
Lloyd H. Kasper

ABSTRACT Human neutrophils are rescued from apoptosis following incubation with once-washed, fibroblast-derived Toxoplasma gondii tachyzoites. Both infected and uninfected neutrophils are rescued, implicating a soluble mediator. In this study we investigated the origin and identity of this soluble mediator. Neutrophils were incubated either with purified tachyzoites or with conditioned medium derived from T. gondii-infected human fibroblasts. Conditioned medium was found to be a potent stimulus that delayed neutrophil apoptosis up to 72 h, whereas purified and extensively washed tachyzoites had no effect. Delayed apoptosis correlated with up-regulation of the neutrophil antiapoptotic protein, Mcl-1, and the neutrophil interleukin 3 receptor α subunit (IL-3Rα), suggesting a role for granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF and granulocyte colony-stimulating factor (G-CSF) were measurable in conditioned medium by enzyme-linked immunosorbent assay. Neutralizing antibodies to GM-CSF and G-CSF were additive in abrogating delayed neutrophil apoptosis induced by conditioned medium. Inhibitors of Src family tyrosine kinases, Gi proteins, phosphatidylinositol 3-kinase, p44 erk1 and p42 erk2 mitogen-activated protein kinases, and Jak2 kinases partially attenuated the effect of conditioned medium, consistent with a role for G-CSF and/or GM-CSF. Hence, delayed neutrophil apoptosis is mediated by GM-CSF and G-CSF secreted by T. gondii-infected human fibroblasts. This enhanced neutrophil survival may contribute to the robust proinflammatory response elicited in the T. gondii-infected host.

Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1912-1918 ◽  
Author(s):  
A Tobler ◽  
HP Marti ◽  
C Gimmi ◽  
AB Cachelin ◽  
S Saurer ◽  
...  

Abstract Tumor necrosis factor alpha (TNF alpha) stimulates granulocyte- macrophage colony-stimulating factor (GM-CSF) production in human fibroblasts and other mesenchymal cells. However, relatively little is known about agents that downregulate cytokine production in these cells. In the present report we show that dexamethasone (Dexa), a synthetic glucocorticoid, markedly reduced GM-CSF production in TNF alpha-stimulated fibroblasts at both the protein and the RNA levels. CSF activity, GM-CSF protein, and RNA levels, determined by an in vitro colony-forming assay in normal human bone marrow cells, by an enzyme immunoassay, and by Northern blotting assay, were reduced to greater than 90% of control values by Dexa (1 mumol/L). Similarly, 1,25- dihydroxyvitamin D3 [1,25(OH)2D3], a hormone with possible physiologic immunoregulatory significance, reduced GM-CSF expression in a concentration- and time-dependent manner. However, this repression was less pronounced than that of Dexa, and in part due to a decreased proliferative activity. In contrast, cyclosporine A (CsA), another immunosuppressive agent, did not alter GM-CSF expression in TNF alpha- stimulated fibroblasts. Our in vitro studies suggest that by inhibiting GM-CSF production in fibroblasts, glucocorticoids and possibly 1,25(OH)2D3, but not CsA, may attenuate TNF alpha-mediated inflammatory processes and influence the regulation of hematopoiesis.


2000 ◽  
Vol 18 (9) ◽  
pp. 1824-1830 ◽  
Author(s):  
Omer N. Koç ◽  
Stanton L. Gerson ◽  
Brenda W. Cooper ◽  
Mary Laughlin ◽  
Howard Meyerson ◽  
...  

PURPOSE: Patient response to hematopoietic progenitor-cell mobilizing regimens seems to vary considerably, making comparison between regimens difficult. To eliminate this inter-patient variability, we designed a cross-over trial and prospectively compared the number of progenitors mobilized into blood after granulocyte-macrophage colony-stimulating factor (GM-CSF) days 1 to 12 plus granulocyte colony-stimulating factor (G-CSF) days 7 to 12 (regimen G) with the number of progenitors after cyclophosphamide plus G-CSF days 3 to 14 (regimen C) in the same patient. PATIENTS AND METHODS: Twenty-nine patients were randomized to receive either regimen G or C first (G1 and C1, respectively) and underwent two leukaphereses. After a washout period, patients were then crossed over to the alternate regimen (C2 and G2, respectively) and underwent two additional leukaphereses. The hematopoietic progenitor-cell content of each collection was determined. In addition, toxicity and charges were tracked. RESULTS: Regimen C (n = 50) resulted in mobilization of more CD34+ cells (2.7-fold/kg/apheresis), erythroid burst-forming units (1.8-fold/kg/apheresis), and colony-forming units–granulocyte-macrophage (2.2-fold/kg/apheresis) compared with regimen G given to the same patients (n = 46; paired t test, P < .01 for all comparisons). Compared with regimen G, regimen C resulted in better mobilization, whether it was given first (P = .025) or second (P = .02). The ability to achieve a target collection of ≥ 2 × 106 CD34+ cells/kg using two leukaphereses was 50% after G1 and 90% after C1. Three of the seven patients in whom mobilization was poor after G1 had ≥ 2 × 106 CD34+ cells/kg with two leukaphereses after C2. In contrast, when regimen G was given second (G2), seven out of 10 patients failed to achieve the target CD34+ cell dose despite adequate collections after C1. Thirty percent of the patients (nine of 29) given regimen C were admitted to the hospital because of neutropenic fever for a median duration of 4 days (range, 2 to 10 days). The higher cost of regimen C was balanced by higher CD34+ cell yield, resulting in equivalent charges based on cost per CD34+ cell collected. CONCLUSION: We report the first clinical trial that used a cross-over design showing that high-dose cyclophosphamide plus G-CSF results in mobilization of more progenitors then GM-CSF plus G-CSF when tested in the same patient regardless of sequence of administration, although the regimen is associated with greater morbidity. Patients who fail to achieve adequate mobilization after regimen G can be treated with regimen C as an effective salvage regimen, whereas patients who fail regimen C are unlikely to benefit from subsequent treatment with regimen G. The cross-over design allowed detection of significant differences between regimens in a small cohort of patients and should be considered in design of future comparisons of mobilization regimens.


1987 ◽  
Vol 166 (5) ◽  
pp. 1484-1498 ◽  
Author(s):  
M D Witmer-Pack ◽  
W Olivier ◽  
J Valinsky ◽  
G Schuler ◽  
R M Steinman

A panning method has been developed to enrich Langerhans cells (LC) from murine epidermis. In standard culture media, the enriched populations progressively lose viability over a 3-d interval. When the cultures are supplemented with keratinocyte-conditioned medium, LC viability is improved and the cells increase in size and number of dendritic processes. Accessory function, as monitored by stimulating activity in the mixed lymphocyte reaction (MLR), increases at least 10-20-fold. The conditioned media of stimulated macrophages and T cells also support the viability and maturation of cultured LC. A panel of purified cytokines has been tested, and only granulocyte/macrophage colony-stimulating factor (GM-CSF) substitutes for bulk-conditioned medium. The recombinant molecule exhibits half-maximal activity at 5 pM. Without activity are: IL-1-4; IFN-alpha/beta/gamma; cachectin/TNF; M- and G-CSF. A rabbit anti-GM-CSF specifically neutralizes the capacity of keratinocyte-conditioned medium to generate active LC. However, GM-CSF is not required for LC function during the MLR itself. We conclude that the development of immunologically active LC in culture is mediated by GM-CSF. The observation that these dendritic cells do not respond to lineage-specific G- and M-CSFs suggests that LC represent a distinct myeloid differentiation pathway. Because GM-CSF can be made by nonimmune cells and can mediate the production of active dendritic cells, this cytokine provides a T-independent mechanism for enhancing the sensitization phase of cell-mediated immunity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4210-4210
Author(s):  
Yoshiki Uemura ◽  
Makoto Kobayashi ◽  
Hideshi Nakata ◽  
Tetsuya Kubota ◽  
Hirokuni Taguchi

Abstract Many cases of tumors that produce granulocyte-colony stimulating factor (G-CSF) or granulocyte macrophage-colony stimulating factor (GM-CSF) have been reported. However, the biological properties regulatory mechanisms of the overproduction of G-CSFor GM-CSF by tumor cells are not well known. We present the role of protein kinase C (PKC) pathways in the constitutive expression of G-CSF and GM-CSF by lung cancer cells. We previously established two lung cancer cell lines, OKa-C-1 and MI-4, that constitutively produce an abundant dose of G-CSF and GM-CSF. We showed that the PKC activator; phorbol 12-myristate 13-acetate (PMA) stimulated the production of GM-CSF in a dose-dependent manner and inversely reduced G-CSF in the cell lines. These effects of PMA were antagonized by PKC inhibitor; staurosporine. The induction of GM-CSF expression by PMA was mediated through the activations of nuclear factor (NF)-kB activation. The induction of G-CSF expression by staurosporine was mediated through p44/42 mitogen-activated protein kinase (MAPK) pathway signaling. PMA accelerated cell growth and inhibited cell death in the cell line. Whereas staurosporine acted inversely. GM-CSF induced by PMA might stimulate cell growth and suppress cell death. G-CSF expression by staurosporine appears to be related to the activation of p44/42 MAPK, and GM-CSF by PMA to NF-kB in OKa-C-1 and MI-4 cells. Figure Figure


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2316-2321 ◽  
Author(s):  
ID Bernstein ◽  
RG Andrews ◽  
KM Zsebo

We tested the ability of recombinant human stem cell factor (SCF) to stimulate isolated marrow precursor cells to form colonies in semisolid media and to generate colony-forming cells (CFC) in liquid culture. SCF, in combination with interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte colony-stimulating factor (G-CSF) caused CD34+ cells to form increased numbers of granulocyte-macrophage colonies (CFU-GM), and to form macroscopic erythroid burst-forming units (BFU-E) in the presence of IL-3, erythropoietin (Epo), and SCF. We tested isolated CD34+lin- cells, a minor subset of CD34+ cells that did not display antigens associated with lymphoid or myeloid lineages, and CD34+lin+ cells, which contain the vast majority of CFC, and found that the enhanced colony growth was most dramatic within the CD34+lin- population. CD34+lin- cells cultured in liquid medium containing SCF combined with IL-3, GM-CSF, or G-CSF gave rise to increased numbers of CFC. Maximal numbers of CFU-GM were generated from CD34+lin- cells after 7 to 21 days of culture, and required the presence of SCF from the initiation of liquid culture. The addition of SCF to IL-3 and/or G-CSF in cultures of single CD34+lin- cells resulted in increased numbers of CFC due to the proliferation of otherwise quiescent precursors and an increase in the numbers of CFC generated from individual precursors. These studies demonstrate the potent synergistic interaction between SCF and other hematopoietic growth factors on a highly immature population of CD34+lin- precursor cells.


Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 290-297 ◽  
Author(s):  
EM Mazur ◽  
JL Cohen ◽  
J Newton ◽  
P Sohl ◽  
A Narendran ◽  
...  

Abstract Sera from patients with bone marrow megakaryocyte aplasia are a rich source of megakaryocyte colony-stimulating activity (Meg-CSA). Other biologic materials exhibiting Meg-CSA include phytohemagglutinin- stimulated human lymphocyte-conditioned medium (PHA-LCM), recombinant interleukin-3 (IL-3), and recombinant granulocyte macrophage colony- stimulating factor (GM-CSF). Neutralizing antisera to both recombinant IL-3 and GM-CSF were used to evaluate the relationship among these sources of Meg-CSA. Varying dilutions of IL-3 and GM-CSF antisera were tested in plasma clot cultures of normal human peripheral blood megakaryocyte progenitors optimally stimulated by either IL-3 (1 U/mL), GM-CSF (1 U/mL), PHA-LCM (2.5% to 5% vol/vol), or aplastic human serum (10% vol/vol). IL-3 antiserum at dilutions up to 1/2,000 totally abrogated megakaryocyte colony growth stimulated by IL-3. A 1/500 dilution of GM-CSF antiserum completely eliminated GM-CSF-induced megakaryocyte colony development. A combination of anti-IL-3 and anti- GM-CSF, each at a 1/500 dilution, inhibited all megakaryocyte colony growth stimulated by optimal concentrations of IL-3 and GM-CSF together. There was no neutralizing crossreactivity between the IL-3 and GM-CSF antisera. At maximally neutralizing concentrations, IL-3 antiserum inhibited 66% of the megakaryocyte colony growth stimulated by PHA-LCM. Residual megakaryocyte colony growth was eliminated by the addition of a 1/500 dilution of anti-GM-CSF.


Sign in / Sign up

Export Citation Format

Share Document