scholarly journals Identification and Genetic Characterization of PmrA-Regulated Genes and Genes Involved in Polymyxin B Resistance in Salmonella enterica Serovar Typhimurium

2002 ◽  
Vol 70 (12) ◽  
pp. 6770-6778 ◽  
Author(s):  
Rita Tamayo ◽  
Sara S. Ryan ◽  
Andrea J. McCoy ◽  
John S. Gunn

ABSTRACT Salmonella enterica serovar Typhimurium encounters antimicrobial peptides (AP) within the phagosomes of professional phagocytes and at intestinal mucosal surfaces. Salmonella serovar Typhimurium utilizes the two-component regulatory system PmrA-PmrB, which is activated in response to the environmental conditions encountered in vivo, to regulate resistance to several AP, including polymyxin B (PM). Random MudJ transposon mutagenesis was used to identify PmrA-PmrB-regulated genes, as well as genetic loci necessary for PM resistance. Three different phenotypic classes of genes were identified: those necessary for PM resistance and regulated by PmrA, those necessary for PM resistance and not regulated by PmrA, and PmrA-regulated genes not required for PM resistance. Loci identified as necessary for PM resistance showed between 6- and 192-fold increased sensitivities to PM, and transposon insertion sites include surA, tolB, and gnd. PmrA-regulated loci identified included dgoA and yibD and demonstrated 500- and 2,500-fold activation by PmrA, respectively. The role of the identified loci in aminoarabinose modification of lipid A was determined by paper chromatography. The gnd mutant demonstrated a loss of aminoarabinose from lipid A, which was suggested to be due to a polar effect on the downstream gene pmrE. The remaining PMs mutants (surA and tolB), as well as the two PmrA-regulated gene (yibD and dgoA) mutants, retained aminoarabinose on lipid A. yibD, dgoA, and gnd (likely affecting pmrE) played no role in PmrA-regulated resistance to high iron concentrations, while surA and tolB mutations grew poorly on high iron media. All PMs mutants identified in this study demonstrated a defect in virulence compared to wild-type Salmonella serovar Typhimurium when administered orally to mice, while the PmrA-regulated gene (yibD and dgoA) mutants showed normal virulence in mice. These data broaden our understanding of in vivo gene regulation, lipopolysaccharide modification, and mechanisms of resistance to AP in enteric bacteria.

2005 ◽  
Vol 187 (10) ◽  
pp. 3391-3399 ◽  
Author(s):  
R. Tamayo ◽  
B. Choudhury ◽  
A. Septer ◽  
M. Merighi ◽  
R. Carlson ◽  
...  

ABSTRACT In response to the in vivo environment, the Salmonella enterica serovar Typhimurium lipopolysaccharide (LPS) is modified. These modifications are controlled in part by the two-component regulatory system PmrA-PmrB, with the addition of 4-aminoarabinose (Ara4N) to the lipid A and phosphoethanolamine (pEtN) to the lipid A and core. Here we demonstrate that the PmrA-regulated STM4118 (cptA) gene is necessary for the addition of pEtN to the LPS core. pmrC, a PmrA-regulated gene necessary for the addition of pEtN to lipid A, did not affect core pEtN addition. Although imparting a similar surface charge modification as Ara4N, which greatly affects polymyxin B resistance and murine virulence, neither pmrC nor cptA plays a dramatic role in antimicrobial peptide resistance in vitro or virulence in the mouse model. Therefore, factors other than surface charge/electrostatic interaction contribute to resistance to antimicrobial peptides such as polymyxin B.


2005 ◽  
Vol 73 (2) ◽  
pp. 1081-1096 ◽  
Author(s):  
A. A. Fadl ◽  
J. Sha ◽  
G. R. Klimpel ◽  
J. P. Olano ◽  
D. W. Niesel ◽  
...  

ABSTRACT Lipopolysaccharide (LPS) and Braun (murein) lipoprotein (Lpp) are major components of the outer membrane of gram-negative enteric bacteria that function as potent stimulators of inflammatory and immune responses. In a previous paper, we provided evidence that two functional copies of the lipoprotein gene (lppA and lppB) located on the chromosome of Salmonella enterica serovar Typhimurium contributed to bacterial virulence. In this study, we characterized lppA and lppB single-knockout (SKO) mutants and compared them with an lpp double-knockout (DKO) mutant using in vitro and in vivo models. Compared to the lpp DKO mutant, which was nonmotile, the motility of the lpp SKO mutants was significantly increased (73 to 77%), although the level of motility did not reach the level of wild-type (WT) S. enterica serovar Typhimurium. Likewise, the cytotoxicity was also significantly increased when T84 human intestinal epithelial cells and RAW264.7 murine macrophages were infected with the lpp SKO mutants compared to the cytotoxicity when cells were infected with the lpp DKO mutant. The level of interleukin-8 (IL-8) in polarized T84 cells infected with the lppB SKO mutant was significantly higher (two- to threefold higher), reaching the level in cells infected with WT S. enterica serovar Typhimurium, than the level in host cells infected with the lppA SKO mutant. The lpp DKO mutant induced minimal levels of IL-8. Similarly, sera from mice infected with the lppB SKO mutant contained 4.5- to 10-fold-higher levels of tumor necrosis factor-α and IL-6; the levels of these cytokines were 1.7- to 3.0-fold greater in the lppA SKO mutant-infected mice than in animals challenged with the lpp DKO mutant. The increased cytokine levels observed with the lppB SKO mutant in mice correlated with greater tissue damage in the livers and spleens of these mice than in the organs of animals infected with the lppA SKO and lpp DKO mutants. Moreover, the lppB SKO mutant-infected mice had increased susceptibility to death. Since the lpp DKO mutant retained intact LPS, we constructed an S. enterica serovar Typhimurium triple-knockout (TKO) mutant in which the lppA and lppB genes were deleted from an existing msbB mutant (msbB encodes an enzyme required for the acylation of lipid A). Compared to the lpp DKO and msbB SKO mutants, the lpp-msbB TKO mutant was unable to induce cytotoxicity and to produce cytokines and chemokines in vitro and in vivo. These studies provided the first evidence of the relative contributions of Lpp and lipid A acylation to Salmonella pathogenesis.


2007 ◽  
Vol 189 (13) ◽  
pp. 4911-4919 ◽  
Author(s):  
Kiyoshi Kawasaki ◽  
Kotaro China ◽  
Masahiro Nishijima

ABSTRACT Salmonella enterica modifies its lipopolysaccharide (LPS), including the lipid A portion, to adapt to its environments. The lipid A 3-O-deacylase PagL exhibits latency; deacylation of lipid A is not usually observed in vivo despite the expression of PagL, which is under the control of a two-component regulatory system, PhoP-PhoQ. In contrast, PagL is released from latency in pmrA and pmrE mutants, both of which are deficient in aminoarabinose-modified lipid A, although the biological significance of this is not clear. The attachment of aminoarabinose to lipid A decreases the net anionic charge at the membrane's surface and reduces electrostatic repulsion between neighboring LPS molecules, leading to increases in bacterial resistance to cationic antimicrobial peptides, including polymyxin B. Here we examined the effects of the release of PagL from latency on resistance to polymyxin B. The pmrA pagL and pmrE pagL double mutants were more susceptible to polymyxin B than were the parental pmrA and pmrE mutants, respectively. Furthermore, introduction of the PagL expression plasmid into the pmrA pagL double mutant increased the resistance to polymyxin B. In addition, PagL-dependent deacylation of lipid A was observed in a mutant in which lipid A could not be modified with phosphoethanolamine, which partly contributes to the PmrA-dependent resistance to polymyxin B. These results, taken together, suggest that the release of PagL from latency compensates for the loss of resistance to polymyxin B that is due to a lack of other modifications to LPS.


2009 ◽  
Vol 191 (8) ◽  
pp. 2743-2752 ◽  
Author(s):  
Clara B. García-Calderón ◽  
Josep Casadesús ◽  
Francisco Ramos-Morales

ABSTRACT IgaA is a membrane protein that prevents overactivation of the Rcs regulatory system in enteric bacteria. Here we provide evidence that igaA is the first gene in a σ70-dependent operon of Salmonella enterica serovar Typhimurium that also includes yrfG, yrfH, and yrfI. We also show that the Lon protease and the MviA response regulator participate in regulation of the igaA operon. Our results indicate that MviA regulates igaA transcription in an RpoS-dependent manner, but the results also suggest that MviA may regulate RcsB activation in an RpoS- and IgaA-independent manner.


2005 ◽  
Vol 187 (7) ◽  
pp. 2448-2457 ◽  
Author(s):  
Kiyoshi Kawasaki ◽  
Robert K. Ernst ◽  
Samuel I. Miller

ABSTRACT Salmonella enterica serovar Typhimurium remodels the lipid A component of lipopolysaccharide, a major component of the outer membrane, to survive within animals. The activation of the sensor kinase PhoQ in host environments increases the synthesis of enzymes that deacylate, palmitoylate, hydroxylate, and attach aminoarabinose to lipid A, also known as endotoxin. These modifications promote bacterial resistance to antimicrobial peptides and reduce the host recognition of lipid A by Toll-like receptor 4. The Salmonella lipid A 3-O-deacylase, PagL, is an outer membrane protein whose expression is regulated by PhoQ. In S. enterica serovar Typhimurium strains that had the ability to add aminoarabinose to lipid A, 3-O-deacylated lipid A species were not detected, despite the PhoQ induction of PagL protein expression. In contrast, strains defective for the aminoarabinose modification of lipid A demonstrated in vivo PagL activity, indicating that this membrane modification inhibited PagL's enzymatic activity. Since not all lipid A molecules are modified with aminoarabinose upon PhoQ activation, these results cannot be ascribed to the substrate specificity of PagL. PagL-dependent deacylation was detected in sonically disrupted membranes and membranes treated with the nonionic detergent n-octyl-β-d-glucopyranoside, suggesting that perturbation of the intact outer membrane releases PagL from posttranslational inhibition by aminoarabinose-containing membranes. Taken together, these results suggest that PagL enzymatic deacylation is posttranslationally inhibited by membrane environments, which either sequester PagL from its substrate or alter its conformation.


2012 ◽  
Vol 80 (9) ◽  
pp. 3215-3224 ◽  
Author(s):  
Qingke Kong ◽  
David A. Six ◽  
Qing Liu ◽  
Lillian Gu ◽  
Shifeng Wang ◽  
...  

ABSTRACTLipid A is a key component of the outer membrane of Gram-negative bacteria and stimulates proinflammatory responses via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. Its endotoxic activity depends on the number and length of acyl chains and its phosphorylation state. InSalmonella entericaserovar Typhimurium, removal of the secondary laurate or myristate chain in lipid A results in bacterial attenuation and growth defectsin vitro. However, the roles of the two lipid A phosphate groups in bacterial virulence and immunogenicity remain unknown. Here, we used anS. TyphimuriummsbB pagL pagP lpxRmutant, carrying penta-acylated lipid A, as the parent strain to construct a series of mutants synthesizing 1-dephosphorylated, 4′-dephosphorylated, or nonphosphorylated penta-acylated lipid A. Dephosphorylated mutants exhibited increased sensitivity to deoxycholate and showed increased resistance to polymyxin B. Removal of both phosphate groups severely attenuated the mutants when administered orally to BALB/c mice, but the mutants colonized the lymphatic tissues and were sufficiently immunogenic to protect the host from challenge with wild-typeS. Typhimurium. Mice receivingS. Typhimurium with 1-dephosphorylated or nonphosphorylated penta-acylated lipid A exhibited reduced levels of cytokines. Attenuated and dephosphorylatedSalmonellavaccines were able to induce adaptive immunity against heterologous (PspA ofStreptococcus pneumoniae) and homologous antigens (lipopolysaccharide [LPS] and outer membrane proteins [OMPs]).


Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2515-2521 ◽  
Author(s):  
María de las Mercedes Pescaretti ◽  
Fabián E. López ◽  
Roberto D. Morero ◽  
Mónica A. Delgado

The degree of polymerization of O-antigen from Salmonella enterica serovar Typhimurium is controlled by the products of the wzzs t and wzzfepE genes. In the present study we investigated the role of the PmrA/PmrB regulatory system in wzzfepE transcription. We report that the direct binding of the PmrA regulator to a specific promoter site induces the expression of the wzzfepE gene. This effect increases the amount of very long (VL) O-antigen, which is required for the resistance of Salmonella to serum human complement and polymyxin B, and for the replication of the bacteria within macrophages. The results obtained here highlight functional differences between WzzfepE and Wzzst, although the genes for both proteins are regulated in a PmrA-dependent way.


2003 ◽  
Vol 185 (6) ◽  
pp. 1935-1941 ◽  
Author(s):  
Sarah Sanowar ◽  
Alexandre Martel ◽  
Hervé Le Moual

ABSTRACT The PhoP/PhoQ two-component regulatory system of Salmonella enterica serovar Typhimurium plays an essential role in controlling virulence by mediating the adaptation to Mg2+ depletion. The pho-24 allele of phoQ harbors a single amino acid substitution (T48I) in the periplasmic domain of the PhoQ histidine kinase sensor. This mutation has been shown to increase net phosphorylation of the PhoP response regulator. We analyzed the effect on signaling by PhoP/PhoQ of various amino acid substitutions at this position (PhoQ-T48X [X = A, S, V, I, or L]). Mutations T48V, T48I, and T48L were found to affect signaling by PhoP/PhoQ both in vivo and in vitro. Mutations PhoQ-T48V and PhoQ-T48I increased both the expression of the mgtA::lacZ transcriptional fusion and the net phosphorylation of PhoP, conferring to cells a PhoP constitutively active phenotype. In contrast, mutation PhoQ-T48L barely responded to changes in the concentration of external Mg2+, in vivo and in vitro, conferring to cells a PhoP constitutively inactive phenotype. By analyzing in vitro the individual catalytic activities of the PhoQ-T48X sensors, we found that the PhoP constitutively active phenotype observed for the PhoQ-T48V and PhoQ-T48I proteins is solely due to decreased phosphatase activity. In contrast, the PhoP constitutively inactive phenotype observed for the PhoQ-T48L mutant resulted from both decreased autokinase activity and increased phosphatase activity. Our data are consistent with a model in which the residue at position 48 of PhoQ contributes to a conformational switch between kinase- and phosphatase-dominant states.


2010 ◽  
Vol 192 (8) ◽  
pp. 2140-2149 ◽  
Author(s):  
Byoungkwan Kim ◽  
Susan M. Richards ◽  
John S. Gunn ◽  
James M. Slauch

ABSTRACT Salmonella enterica serovar Typhimurium replicates in macrophages, where it is subjected to antimicrobial substances, including superoxide, antimicrobial peptides, and proteases. The bacterium produces two periplasmic superoxide dismutases, SodCI and SodCII. Although both are expressed during infection, only SodCI contributes to virulence in the mouse by combating phagocytic superoxide. The differential contribution to virulence is at least partially due to inherent differences in the SodCI and SodCII proteins that are independent of enzymatic activity. SodCII is protease sensitive, and like other periplasmic proteins, it is released by osmotic shock. In contrast, SodCI is protease resistant and is retained within the periplasm after osmotic shock, a phenomenon that we term “tethering.” We hypothesize that in the macrophage, antimicrobial peptides transiently disrupt the outer membrane. SodCII is released and/or phagocytic proteases gain access to the periplasm, and SodCII is degraded. SodCI is tethered within the periplasm and is protease resistant, thereby remaining to combat superoxide. Here we test aspects of this model. SodCII was released by the antimicrobial peptide polymyxin B or a mouse macrophage antimicrobial peptide (CRAMP), while SodCI remained tethered within the periplasm. A Salmonella pmrA constitutive mutant no longer released SodCII in vitro. Moreover, in the constitutive pmrA background, SodCII could contribute to survival of Salmonella during infection. SodCII also provided a virulence benefit in mice genetically defective in production of CRAMP. Thus, consistent with our model, protecting the outer membrane against antimicrobial peptides allows SodCII to contribute to virulence in vivo. These data also suggest direct in vivo cooperative interactions between macrophage antimicrobial effectors.


2011 ◽  
Vol 79 (10) ◽  
pp. 4227-4239 ◽  
Author(s):  
Qingke Kong ◽  
Jiseon Yang ◽  
Qing Liu ◽  
Praveen Alamuri ◽  
Kenneth L. Roland ◽  
...  

ABSTRACTLipopolysaccharide (LPS) is a major virulence factor ofSalmonella entericaserovar Typhimurium and is composed of lipid A, core oligosaccharide (C-OS), and O-antigen polysaccharide (O-PS). While the functions of the gene products involved in synthesis of core and O-antigen have been elucidated, the effect of removing O-antigen and core sugars on the virulence and immunogenicity ofSalmonella entericaserovar Typhimurium has not been systematically studied. We introduced nonpolar, defined deletion mutations inwaaG(rfaG),waaI(rfaI),rfaH,waaJ(rfaJ),wbaP(rfbP),waaL(rfaL), orwzy(rfc) into wild-typeS.Typhimurium. The LPS structure was confirmed, and a number ofin vitroandin vivoproperties of each mutant were analyzed. All mutants were significantly attenuated compared to the wild-type parent when administered orally to BALB/c mice and were less invasive in host tissues. Strains with ΔwaaGand ΔwaaImutations, in particular, were deficient in colonization of Peyer's patches and liver. This deficiency could be partially overcome in the ΔwaaImutant when it was administered intranasally. In the context of an attenuated vaccine strain delivering the pneumococcal antigen PspA, all of the mutations tested resulted in reduced immune responses against PspA andSalmonellaantigens. Our results indicate that nonreversible truncation of the outer core is not a viable option for developing a live oralSalmonellavaccine, while awzymutant that retains one O-antigen unit is adequate for stimulating the optimal protective immunity to homologous or heterologous antigens by oral, intranasal, or intraperitoneal routes of administration.


Sign in / Sign up

Export Citation Format

Share Document