antimicrobial peptide resistance
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 21)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Aurelie Guyet ◽  
Amirah Alofi ◽  
Richard A Daniel

In Bacillus subtilis, the cell is protected from the environment by a cell envelope, which comprises of layers of peptidoglycan that maintain the cell shape and anionic teichoic acids polymers whose biological function remains unclear. In B. subtilis, loss of all Class A Penicillin-Binding Proteins (aPBPs) which function in peptidoglycan synthesis is conditionally lethal. Here we show that this lethality is associated with an alteration of the lipoteichoic acids (LTA) and the accumulation of the major autolysin LytE in the cell wall. We provide the first evidence that the length and abundance of LTA acts to regulate the cellular level of LytE. Importantly, we identify a novel function for the aminoacyl-phosphatidylglycerol synthase MprF which acts to modulate LTA biosynthesis in B. subtilis and in the pathogen Staphylococcus aureus. This finding has implications for our understanding of antimicrobial peptide resistance (particularly daptomycin) in clinically relevant bacteria and MprF-associated virulence in pathogens, such as methicillin resistant S. aureus.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 281
Author(s):  
Cassidy Anderson ◽  
Catherine A. Brissette

Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.


2021 ◽  
Vol 22 (3) ◽  
pp. 1376
Author(s):  
Mafalda Cavalheiro ◽  
Daniela Romão ◽  
Rui Santos ◽  
Dalila Mil-Homens ◽  
Pedro Pais ◽  
...  

Candida glabrata is an emerging fungal pathogen whose success depends on its ability to resist antifungal drugs but also to thrive against host defenses. In this study, the predicted multidrug transporter CgTpo4 (encoded by ORF CAGL0L10912g) is described as a new determinant of virulence in C. glabrata, using the infection model Galleria mellonella. The CgTPO4 gene was found to be required for the C. glabrata ability to kill G. mellonella. The transporter encoded by this gene is also necessary for antimicrobial peptide (AMP) resistance, specifically against histatin-5. Interestingly, G. mellonella’s AMP expression was found to be strongly activated in response to C. glabrata infection, suggesting AMPs are a key antifungal defense. CgTpo4 was also found to be a plasma membrane exporter of polyamines, especially spermidine, suggesting that CgTpo4 is able to export polyamines and AMPs, thus conferring resistance to both stress agents. Altogether, this study presents the polyamine exporter CgTpo4 as a determinant of C. glabrata virulence, which acts by protecting the yeast cells from the overexpression of AMPs, deployed as a host defense mechanism.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1415
Author(s):  
Kyoung-Mi Kang ◽  
Gi Yong Lee ◽  
Soo-Jin Yang

Sequence type (ST) 72 methicillin-resistant Staphylococcus aureus with staphylococcal cassette chromosome mec (SCCmec) type IV (ST72-MRSA-IV) and ST5-MRSA-II are the most significant lineages found in community-associated (CA) and healthcare-associated (HA) environments in Korea, respectively. ST5 HA-MRSA-II tend to display enhanced resistance to host defense-cationic antimicrobial peptides (HD-CAPs) compared to ST72 CA-MRSA-IV and ST72 livestock-associated (LA)-MRSA-IV due to mechanisms involving a higher surface positive charge. Thus, the present study explored the genetic factors contributing to the enhanced HD-CAP resistance phenotype in ST5 MRSA strains. The ST5 HA-MRSA-II strains displayed higher levels of mprF and dltABCD expression compared to the ST72 CA-/LA-MRSA-IV strains. The increase in expression of mprF and dltABCD in ST5 HA-MRSA-II strains was correlated with dysregulation of the upstream transcriptional regulator, graRS. However, single nucleotide polymorphisms (SNPs) within mprF and graRS ORFs were not involved in the enhanced surface positive charge or the altered expression of mprF/dltABCD.


2020 ◽  
Author(s):  
Gerson-Dirceu López ◽  
Elizabeth Suesca ◽  
Gerardo Álvarez-Rivera ◽  
Adriana Rosato ◽  
Elena Ibáñez ◽  
...  

AbstractStaphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. In this work, a targeted metabolomics and biophysical study was carried out on native and knock-out S. aureus strains to investigate the biosynthetic pathways of STX and related carotenoids. Identification of 34 metabolites at different growth phases (8, 24 and 48h), reveal shifts of carotenoid populations during progression towards stationary phase. Six of the carotenoids in the STX biosynthetic pathway and three menaquinones (Vitamin K2) were identified in the same chromatogram. Furthermore, other STX homologues with varying acyl chain structures reported herein for the first time, which reveal the extensive enzymatic activity of CrtO/CrtN. Fourier Transform infrared spectroscopy show that STX increases acyl chain order and shifts the cooperative melting of the membrane indicating a more rigid lipid bilayer. This study shows the diversity of carotenoids in S. aureus, and their influence on membrane biophysical properties.


Sign in / Sign up

Export Citation Format

Share Document