host recognition
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 80)

H-INDEX

46
(FIVE YEARS 7)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 167
Author(s):  
Xiang Zhou ◽  
Zheng Wang ◽  
Guangchao Cui ◽  
Zimeng Du ◽  
Yunlong Qian ◽  
...  

Odorant-binding proteins (OBPs) play a key role in the olfactory system and are essential for mating and oviposition host selection. Tirathaba rufivena, a serious lepidopterous insect pest of the palm area in recent years, has threatened cultivations of Areca catechu in Hainan. Female-biased odorant-binding protein 4 of T. rufivena (TrufOBP4) expression was hypothesized to participate in the process of oviposition host recognition and localization. In this study, we cloned and analyzed the cDNA sequence of TrufOBP4. The predicted mature protein TrufOBP4 is a small, soluble, secretory protein and belongs to a classic OBP subfamily. Fluorescence binding assay results showed that TrufOBP4 had high binding abilities with the host plant volatiles, octyl methoxycinnamate, dibutyl phthalate, myristic acid and palmitic acid. These four components tend to dock in the same binding pocket based on the molecular docking result. The interactions and contributions of key amino acid residues were also characterized. This research provides evidence that TrufOBP4 might participate in the chemoreception of volatile compounds from inflorescences of A. catechu and can contribute to the integrated management of T. rufivena.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0255262
Author(s):  
Jackson Rapala ◽  
Brenda Miller ◽  
Maximiliano Garcia ◽  
Megan Dolan ◽  
Matthew Bockman ◽  
...  

The diversity of bacteriophages is likely unparalleled in the biome due to the immense variety of hosts and the multitude of viruses that infect them. Recent efforts have led to description at the genomic level of numerous bacteriophages that infect the Actinobacteria, but relatively little is known about those infecting other prokaryotic phyla, such as the purple non-sulfur photosynthetic α-proteobacterium Rhodobacter capsulatus. This species is a common inhabitant of freshwater ecosystems and has been an important model system for the study of photosynthesis. Additionally, it is notable for its utilization of a unique form of horizontal gene transfer via a bacteriophage-like element known as the gene transfer agent (RcGTA). Only three bacteriophages of R. capsulatus had been sequenced prior to this report. Isolation and characterization at the genomic level of 26 new bacteriophages infecting this host advances the understanding of bacteriophage diversity and the origins of RcGTA. These newly discovered isolates can be grouped along with three that were previously sequenced to form six clusters with four remaining as single representatives. These bacteriophages share genes with RcGTA that seem to be related to host recognition. One isolate was found to cause lysis of a marine bacterium when exposed to high-titer lysate. Although some clusters are more highly represented in the sequenced genomes, it is evident that many more bacteriophage types that infect R. capsulatus are likely to be found in the future.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001424
Author(s):  
Enea Maffei ◽  
Aisylu Shaidullina ◽  
Marco Burkolter ◽  
Yannik Heyer ◽  
Fabienne Estermann ◽  
...  

Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage–host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage–host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages’ host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.


2021 ◽  
Author(s):  
Lauren M Hemara ◽  
Jay Jayaraman ◽  
Paul Sutherland ◽  
Mirco Montefiori ◽  
Saadiah Arshed ◽  
...  

A pandemic isolate of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) has devastated kiwifruit orchards growing cultivars of Actinidia chinensis. In contrast, A. arguta (kiwiberry) is resistant to Psa3. This resistance is mediated via effector-triggered immunity, as demonstrated by induction of the hypersensitive response in infected A. arguta leaves, observed by microscopy and quantified by ion-leakage assays. Isolates of Psa3 that cause disease in A. arguta have been isolated and analyzed, revealing a 49 kb deletion in the exchangeable effector locus (EEL). This natural EEL-mutant isolate and strains with synthetic knockouts of the EEL were more virulent in A. arguta plantlets than wild-type Psa3. Screening of a complete library of Psa3 effector knockout strains identified increased growth in planta for knockouts of four effectors — AvrRpm1a, HopF1c, HopZ5a, and the EEL effector HopAW1a — suggesting a resistance response in A. arguta. Hypersensitive response (HR) assays indicate that three of these effectors trigger a host species-specific HR. A Psa3 strain with all four effectors knocked out escaped host recognition, but a cumulative increase in bacterial pathogenicity and virulence was not observed. These avirulence effectors can be used in turn to identify the first cognate resistance genes in Actinidia for breeding durable resistance into future kiwifruit cultivars.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yanqiu Gong ◽  
Suideng Qin ◽  
Lunzhi Dai ◽  
Zhixin Tian

AbstractCoronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.


2021 ◽  
pp. 118839
Author(s):  
Adele Vanacore ◽  
Giuseppe Vitiello ◽  
Alan Wanke ◽  
Domenico Cavasso ◽  
Luke A. Clifton ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258385
Author(s):  
Nikolina Babic ◽  
Filip Kovacic

The efficacy of antibiotics to treat bacterial infections declines rapidly due to antibiotic resistance. This problem has stimulated the development of novel antibiotics, but most attempts have failed. Consequently, the idea of mining uncharacterized genes of pathogens to identify potential targets for entirely new classes of antibiotics was proposed. Without knowing the biochemical function of a protein, it is difficult to validate its potential for drug targeting; therefore, the functional characterization of bacterial proteins of unknown function must be accelerated. Here, we present a paradigm for comprehensively predicting the biochemical functions of a large set of proteins encoded by hypothetical genes in human pathogens to identify candidate drug targets. A high-throughput approach based on homology modelling with ten templates per target protein was applied to the set of 2103 P. aeruginosa proteins encoded by hypothetical genes. The >21000 homology modelling results obtained and available biological and biochemical information about several thousand templates were scrutinized to predict the function of reliably modelled proteins of unknown function. This approach resulted in assigning one or often multiple putative functions to hundreds of enzymes, ligand-binding proteins and transporters. New biochemical functions were predicted for 41 proteins whose essential or virulence-related roles in P. aeruginosa were already experimentally demonstrated. Eleven of them were shortlisted as promising drug targets that participate in essential pathways (maintaining genome and cell wall integrity), virulence-related processes (adhesion, cell motility, host recognition) or antibiotic resistance, which are general drug targets. These proteins are conserved in other WHO priority pathogens but not in humans; therefore, they represent high-potential targets for preclinical studies. These and many more biochemical functions assigned to uncharacterized proteins of P. aeruginosa, made available as PaPUF database, may guide the design of experimental screening of inhibitors, which is a crucial step towards the validation of the highest-potential targets for the development of novel drugs against P. aeruginosa and other high-priority pathogens.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Christoph von Beeren ◽  
Adrian Brückner ◽  
Philipp O. Hoenle ◽  
Bryan Ospina-Jara ◽  
Daniel J. C. Kronauer ◽  
...  

Abstract Background Ant colonies are plagued by a diversity of arthropod guests, which adopt various strategies to avoid or to withstand host attacks. Chemical mimicry of host recognition cues is, for example, a common integration strategy of ant guests. The morphological gestalt and body size of ant guests have long been argued to also affect host hostility, but quantitative studies testing these predictions are largely missing. We here evaluated three guest traits as triggers of host aggression—body size, morphological gestalt, and accuracy in chemical mimicry—in a community of six Eciton army ant species and 29 guest species. We quantified ant aggression towards 314 guests in behavioral assays and, for the same individuals, determined their body size and their accuracy in mimicking ant cuticular hydrocarbon (CHC) profiles. We classified guests into the following gestalts: protective, myrmecoid, staphylinid-like, phorid-like, and larval-shaped. We expected that (1) guests with lower CHC mimicry accuracy are more frequently attacked; (2) larger guests are more frequently attacked; (3) guests of different morphological gestalt receive differing host aggression levels. Results Army ant species had distinct CHC profiles and accuracy of mimicking these profiles was variable among guests, with many species showing high mimicry accuracy. Unexpectedly, we did not find a clear relationship between chemical host similarity and host aggression, suggesting that other symbiont traits need to be considered. We detected a relationship between the guests’ body size and the received host aggression, in that diminutive forms were rarely attacked. Our data also indicated that morphological gestalt might be a valuable predictor of host aggression. While most ant-guest encounters remained peaceful, host behavior still differed towards guests in that ant aggression was primarily directed towards those guests possessing a protective or a staphylinid-like gestalt. Conclusion We demonstrate that CHC mimicry accuracy does not necessarily predict host aggression towards ant symbionts. Exploitation mechanisms are diverse, and we conclude that, besides chemical mimicry, other factors such as the guests’ morphological gestalt and especially their body size might be important, yet underrated traits shaping the level of host hostility against social insect symbionts.


2021 ◽  
Vol 17 (9) ◽  
Author(s):  
Ian J. Ausprey ◽  
Mark E. Hauber

In coevolutionary arms-races, reciprocal ecological interactions and their fitness impacts shape the course of phenotypic evolution. The classic example of avian host–brood parasite interactions selects for host recognition and rejection of increasingly mimetic foreign eggs. An essential component of perceptual mimicry is that parasitic eggs escape detection by host sensory systems, yet there is no direct evidence that the avian visual system covaries with parasitic egg recognition or mimicry. Here, we used eye size measurements collected from preserved museum specimens as a metric of the avian visual system for species involved in host–brood parasite interactions. We discovered that (i) hosts had smaller eyes compared with non-hosts, (ii) parasites had larger eyes compared with hosts before but not after phylogenetic corrections, perhaps owing to the limited number of independent evolutionary origins of obligate brood parasitism, (iii) egg rejection in hosts with non-mimetic parasitic eggs positively correlated with eye size, and (iv) eye size was positively associated with increased avian-perceived host–parasite eggshell similarity. These results imply that both host-use by parasites and anti-parasitic responses by hosts covary with a metric of the visual system across relevant bird species, providing comparative evidence for coevolutionary patterns of host and brood parasite sensory systems.


2021 ◽  
Author(s):  
Jackson Rapala ◽  
Brenda Miller ◽  
Maximiliano Garcia ◽  
Megan Dolan ◽  
Matthew Bockman ◽  
...  

The diversity of bacteriophages is likely unparalleled in the biome due to the immense variety of hosts and the multitude of viruses that infect them. Recent efforts have led to description at the genomic level of numerous bacteriophages that infect the Actinobacteria, but relatively little is known about those infecting other prokaryotic phyla, such as the purple non-sulfur photosynthetic α-proteobacterium Rhodobacter capsulatus. This species is a common inhabitant of freshwater ecosystems and has been an important model system for the study of photosynthesis. Additionally, it is notable for its utilization of a unique form of horizontal gene transfer via a bacteriophage-like element known as the gene transfer agent (RcGTA). Only three bacteriophages of R. capsulatus had been sequenced prior to this report. Isolation and characterization at the genomic level of 26 new bacteriophages infecting this host advances the understanding of bacteriophage diversity and the origins of RcGTA. These newly discovered isolates can be grouped along with three that were previously sequenced to form six clusters with four remaining as single representatives. These bacteriophages share genes with RcGTA that seem to be related to host recognition. One isolate was found to cause lysis of a marine bacterium when exposed to high titer lysate. Although some clusters are more highly represented in the sequenced genomes, it is evident that many more bacteriophage types that infect R. capsulatus are likely to be found in the future.


Sign in / Sign up

Export Citation Format

Share Document