scholarly journals sciS, an icmF Homolog in Salmonella enterica Serovar Typhimurium, Limits Intracellular Replication and Decreases Virulence

2005 ◽  
Vol 73 (7) ◽  
pp. 4338-4345 ◽  
Author(s):  
Duncan A. Parsons ◽  
Fred Heffron

ABSTRACT Salmonella enterica serovar Typhimurium utilizes macrophages to disseminate from the intestine to deeper tissues within the body. While S. enterica serovar Typhimurium has been shown to kill its host macrophage, it can persist intracellularly beyond 18 h postinfection. To identify factors involved in late stages of infection, we screened a transposon library made in S. enterica serovar Typhimurium for the ability to persist in J774 macrophages at 24 h postinfection. Through this screen, we identified a gene, sciS, found to be homologous to icmF in Legionella pneumophila. icmF, which is required for intracellular multiplication, is conserved in several gram-negative pathogens, and its homolog appears to have been acquired horizontally in S. enterica serovar Typhimurium. We found that an sciS mutant displayed increased intracellular numbers in J774 macrophages when compared to the wild-type strain at 24 h postinfection. sciS was maximally transcribed at 27 h postinfection and is repressed by SsrB, an activator of genes required for promoting intracellular survival. Finally, we demonstrate that an sciS mutant is hypervirulent in mice when administered intragastrically. Taken together, these data indicate a role for SciS in controlling intracellular bacterial levels at later stages of infection and attenuating virulence in a murine host

2020 ◽  
Vol 8 (5) ◽  
pp. 630
Author(s):  
Vanesa García ◽  
Ana Herrero-Fresno ◽  
Rosaura Rodicio ◽  
Alfonso Felipe-López ◽  
Ignacio Montero ◽  
...  

The resistance plasmid pUO-StVR2, derived from virulence plasmid pSLT, is widespread in clinical isolates of Salmonella enterica serovar Typhimurium recovered in Spain and other European countries. pUO-StVR2 carries several genes encoding a FetMP-Fls system, which could be involved in iron uptake. We therefore analyzed S. Typhimurium LSP 146/02, a clinical strain selected as representative of the isolates carrying the plasmid, and an otherwise isogenic mutant lacking four genes (fetMP-flsDA) of the fetMP-fls region. Growth curves and determination of the intracellular iron content under iron-restricted conditions demonstrated that deletion of these genes impairs iron acquisition. Thus, under these conditions, the mutant grew significantly worse than the wild-type strain, its iron content was significantly lower, and it was outcompeted by the wild-type strain in competition assays. Importantly, the strain lacking the fetMP-flsDA genes was less invasive in cultured epithelial HeLa cells and replicated poorly upon infection of RAW264.7 macrophages. The genes were introduced into S. Typhimurium ATCC 14028, which lacks the FetMP-Fls system, and this resulted in increased growth under iron limitation as well as an increased ability to multiply inside macrophages. These findings indicate that the FetMP-Fls iron acquisition system exceeds the benefits conferred by the other high-affinity iron uptake systems carried by ATCC 14028 and LSP 146/02. We proposed that effective iron acquisition by this system in conjunction with antimicrobial resistance encoded from the same plasmid have greatly contributed to the epidemic success of S. Typhimurium isolates harboring pUO-StVR2.


2004 ◽  
Vol 72 (12) ◽  
pp. 7357-7359 ◽  
Author(s):  
Jacinta Farn ◽  
Mark Roberts

ABSTRACT DegQ is a serine protease that is highly homologous to HtrA, an important virulence determinant of Salmonella enterica serovar Typhimurium. We examined if DegQ is involved in serovar Typhimurium pathogenesis. A serovar Typhimurium degQ mutant was as virulent as the wild-type strain in mice. However, a serovar Typhimurium htrA degQ mutant survived less well in murine organs, particularly in the liver, than a serovar Typhimurium htrA mutant. DegQ is not essential for serovar Typhimurium pathogenesis but may play a small role during salmonella growth at systemic sites.


2009 ◽  
Vol 77 (4) ◽  
pp. 1397-1405 ◽  
Author(s):  
Regino Mercado-Lubo ◽  
Mary P. Leatham ◽  
Tyrrell Conway ◽  
Paul S. Cohen

ABSTRACT Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes.


2004 ◽  
Vol 186 (3) ◽  
pp. 750-757 ◽  
Author(s):  
Gunilla Jäger ◽  
Ramune Leipuviene ◽  
Michael G. Pollard ◽  
Qiang Qian ◽  
Glenn R. Björk

ABSTRACT The modified nucleoside 2-thiocytidine (s2C) has so far been found in tRNA from organisms belonging to the phylogenetic domains Archaea and Bacteria. In the bacteria Escherichia coli and Salmonella enterica serovar Typhimurium, s2C is present in position 32 of only four tRNA species— \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{ICG}^{Arg}\) \end{document} , \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{CCG}^{Arg}\) \end{document} , \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{mnm^{5}UCU}^{Arg}\) \end{document} , and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{GCU}^{Ser}\) \end{document} . An in-frame deletion of an S. enterica gene (designated ttcA, for “two-thio-cytidine”) was constructed, and such a mutant has no detectable s2C in its tRNA. The TtcA protein family is characterized by the existence of both a PP-loop and a Cys-X1-X2-Cys motif in the central region of the protein but can be divided into two distinct groups based on the presence and location of additional Cys-X1-X2-Cys motifs in terminal regions of the sequence. Mutant analysis showed that both cysteines in this central conserved Cys-X1-X2-Cys motif are required for the formation of s2C. The ΔttcA1 mutant grows at the same rate as the congenic wild-type strain, and no growth disadvantage caused by the lack of s2C was observed in a mixed-population experiment. Lack of s2C32 did not reduce the selection rate at the ribosomal aminoacyl-tRNA site (A-site) for \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(Arg-tRNA_{ICG}^{Arg}\) \end{document} at any of its cognate CGN codons, whereas A-site selection at AGG by \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(Arg-tRNA_{mnm^{5}UCU}^{Arg}\) \end{document} was dependent on the presence of s2C32. The presence of s2C32 in peptidyl- \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{CCU}^{Arg}\) \end{document} or in peptidyl- \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{mnm^{5}UCU}^{Arg}\) \end{document} interfered with decoding in the A-site. The presence of s2C32 in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(tRNA_{ICG}^{Arg}\) \end{document} decreased the rate of translation of the CGA codon but not that of the CGU codon.


2007 ◽  
Vol 176 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Adam C. Smith ◽  
Won Do Heo ◽  
Virginie Braun ◽  
Xiuju Jiang ◽  
Chloe Macrae ◽  
...  

Members of the Rab guanosine triphosphatase (GTPase) family are key regulators of membrane traffic. Here we examined the association of 48 Rabs with model phagosomes containing a non-invasive mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium). This mutant traffics to lysosomes and allowed us to determine which Rabs localize to a maturing phagosome. In total, 18 Rabs associated with maturing phagosomes, each with its own kinetics of association. Dominant-negative mutants of Rab23 and 35 inhibited phagosome–lysosome fusion. A large number of Rab GTPases localized to wild-type Salmonella-containing vacuoles (SCVs), which do not fuse with lysosomes. However, some Rabs (8B, 13, 23, 32, and 35) were excluded from wild-type SCVs whereas others (5A, 5B, 5C, 7A, 11A, and 11B) were enriched on this compartment. Our studies demonstrate that a complex network of Rab GTPases controls endocytic progression to lysosomes and that this is modulated by S. Typhimurium to allow its intracellular growth.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Melina B. Cian ◽  
Nicole P. Giordano ◽  
Revathi Masilamani ◽  
Keaton E. Minor ◽  
Zachary D. Dalebroux

ABSTRACT Salmonella enterica serovar Typhimurium (S. Typhimurium) relies upon the inner membrane protein PbgA to enhance outer membrane (OM) integrity and promote virulence in mice. The PbgA transmembrane domain (residues 1 to 190) is essential for viability, while the periplasmic domain (residues 191 to 586) is dispensable. Residues within the basic region (residues 191 to 245) bind acidic phosphates on polar phospholipids, like for cardiolipins, and are necessary for salmonella OM integrity. S. Typhimurium bacteria increase their OM cardiolipin concentrations during activation of the PhoPQ regulators. The mechanism involves PbgA’s periplasmic globular region (residues 245 to 586), but the biological role of increasing cardiolipins on the surface is not understood. Nonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB (also known as yciM), ftsH, and lpxC, variably suppressed the defects in OM integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191–586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted). Compared to the OMs of the wild-type salmonellae, the OMs of the pbgA mutants had increased levels of lipid A-core molecules, cardiolipins, and phosphatidylethanolamines and decreased levels of specific phospholipids with cyclopropanated fatty acids. Complementation and substitution mutations in LapB and LpxC generally restored the phospholipid and LPS assembly defects for the pbgA mutants. During bacteremia, mice infected with the pbgA mutants survived and cleared the bacteria, while animals infected with wild-type salmonellae succumbed within 1 week. Remarkably, wild-type mice survived asymptomatically with pbgA-lpxC salmonellae in their livers and spleens for months, but Toll-like receptor 4-deficient animals succumbed to these infections within roughly 1 week. In summary, S. Typhimurium uses PbgA to influence LPS assembly during stress in order to survive, adapt, and proliferate within the host environment.


2007 ◽  
Vol 76 (3) ◽  
pp. 1128-1134 ◽  
Author(s):  
Regino Mercado-Lubo ◽  
Eric J. Gauger ◽  
Mary P. Leatham ◽  
Tyrrell Conway ◽  
Paul S. Cohen

ABSTRACT Previously we showed that the tricarboxylic acid (TCA) cycle operates as a full cycle during Salmonella enterica serovar Typhimurium SR-11 peroral infection of BALB/c mice (M. Tchawa Yimga et al., Infect. Immun. 74:1130-1140, 2006). The evidence was that a ΔsucCD mutant (succinyl coenzyme A [succinyl-CoA] synthetase), which prevents the conversion of succinyl-CoA to succinate, and a ΔsdhCDA mutant (succinate dehydrogenase), which blocks the conversion of succinate to fumarate, were both attenuated, whereas an SR-11 ΔaspA mutant (aspartase) and an SR-11 ΔfrdABCD mutant (fumarate reductase), deficient in the ability to run the reductive branch of the TCA cycle, were fully virulent. In the present study, evidence is presented that a serovar Typhimurium SR-11 ΔfrdABCD ΔsdhCDA double mutant is avirulent in BALB/c mice and protective against subsequent infection with the virulent serovar Typhimurium SR-11 wild-type strain via the peroral route and is highly attenuated via the intraperitoneal route. These results suggest that fumarate reductase, which normally runs in the reductive pathway in the opposite direction of succinate dehydrogenase, can replace it during infection by running in the same direction as succinate dehydrogenase in order to run a full TCA cycle in an SR-11 ΔsdhCDA mutant. The data also suggest that the conversion of succinate to fumarate plays a key role in serovar Typhimurium virulence. Moreover, the data raise the possibility that S. enterica ΔfrdABCD ΔsdhCDA double mutants and ΔfrdABCD ΔsdhCDA double mutants of other intracellular bacterial pathogens with complete TCA cycles may prove to be effective live vaccine strains for animals and humans.


Microbiology ◽  
2007 ◽  
Vol 153 (4) ◽  
pp. 1221-1228 ◽  
Author(s):  
M. N Giacomodonato ◽  
S Uzzau ◽  
D Bacciu ◽  
R Caccuri ◽  
S. H Sarnacki ◽  
...  

2005 ◽  
Vol 73 (1) ◽  
pp. 459-463 ◽  
Author(s):  
Gary Rowley ◽  
Andrew Stevenson ◽  
Jan Kormanec ◽  
Mark Roberts

ABSTRACT The alternative sigma factor (RpoE σE) enables Salmonella enterica serovar Typhimurium to adapt to stressful conditions, such as oxidative stress, nutrient deprivation, and growth in mammalian tissues. Infection of mice by Salmonella serovar Typhimurium also requires σE. In Escherichia coli, activation of the σE pathway is dependent on proteolysis of the anti-sigma factor RseA and is initiated by DegS. DegS is also important in order for E. coli to cause extraintestinal infection in mice. We constructed a degS mutant of the serovar Typhimurium strain SL1344 and compared its behavior in vitro and in vivo with those of its wild-type (WT) parent and an isogenic rpoE mutant. Unlike E. coli degS strains, the Salmonella serovar Typhimurium degS strain grew as well as the WT strain at 42°C. The degS mutant survived very poorly in murine macrophages in vitro and was highly attenuated compared with the WT strain for both the oral and parenteral routes of infection in mice. However, the degS mutant was not as attenuated as the serovar Typhimurium rpoE mutant: 100- to 1,000-fold more degS bacteria than rpoE bacteria were present in the livers and spleens of mice 24 h after intraperitoneal challenge. In most assays, the rpoE mutant was more severely affected than the degS mutant and a σE-dependent reporter gene was more active in the degS mutant than the rpoE strain. These findings indicate that degS is important for activation of the σE pathway in serovar Typhimurium but that alternative pathways for σE activation probably exist.


Sign in / Sign up

Export Citation Format

Share Document