scholarly journals Genetic Evidence for an Interaction of the UbiG O-Methyltransferase with UbiX in Escherichia coli Coenzyme Q Biosynthesis

2006 ◽  
Vol 188 (17) ◽  
pp. 6435-6439 ◽  
Author(s):  
Melissa Gulmezian ◽  
Haitao Zhang ◽  
George T. Javor ◽  
Catherine F. Clarke

ABSTRACT IS16 is a thiol-sensitive, Q-deficient mutant strain of Escherichia coli. Here, we show that IS16 harbors a mutation in the ubiG gene encoding a methyltransferase required for two O-methylation steps of Q biosynthesis. Complementation of IS16 with either ubiG or ubiX K-12 reverses this phenotype, suggesting that UbiX may interact with UbiG.

2020 ◽  
Vol 21 (24) ◽  
pp. 9625
Author(s):  
Emma Guitart Font ◽  
Georg A. Sprenger

Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h−1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h−1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.


Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 880-890 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Toshiyuki Ishizuka ◽  
Shuhei Hotta ◽  
Michiko Aoki ◽  
Tomohiro Shimada ◽  
...  

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


1980 ◽  
Vol 190 (1) ◽  
pp. 79-94 ◽  
Author(s):  
Robert W. Jones ◽  
Alan Lamont ◽  
Peter B. Garland

Low concentrations (1–50μm) of ubiquinol1 were rapidly oxidized by spheroplasts of Escherichia coli derepressed for synthesis of nitrate reductase using either nitrate or oxygen as electron acceptor. Oxidation of ubiquinol1 drove an outward translocation of protons with a corrected →H+/2e− stoichiometry [Scholes & Mitchell (1970) J. Bioenerg.1, 309–323] of 1.49 when nitrate was the acceptor and 2.28 when oxygen was the acceptor. Proton translocation driven by the oxidation of added ubiquinol1 was also observed in spheroplasts from a double quinone-deficient mutant strain AN384 (ubiA−menA−), whereas a haem-deficient mutant, strain A1004a, did not oxidize ubiquinol1. Proton translocation was not observed if either the protonophore carbonyl cyanide m-chlorophenylhydrazone or the respiratory inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide was present. When spheroplasts oxidized Diquat radical (DQ+) to the oxidized species (DQ++) with nitrate as acceptor, nitrate was reduced to nitrite according to the reaction: [Formula: see text] and nitrite was further reduced in the reaction: [Formula: see text] Nitrite reductase activity (2) was inhibited by CO, leaving nitrate reductase activity (1) unaffected. Benzyl Viologen radical (BV+) is able to cross the cytoplasmic membrane and is oxidized directly by nitrate reductase to the divalent cation, BV++. In the presence of CO, this reaction consumes two protons: [Formula: see text] The consumption of these protons could not be detected by a pH electrode in the extra-cellular bulk phase of a suspension of spheroplasts unless the cytoplasmic membrane was made permeable to protons by the addition of nigericin or tetrachlorosalicylanilide. It is concluded that the protons of eqn. (3) are consumed at the cytoplasmic aspect of the cytoplasmic membrane. Diquat radical, reduced N-methylphenazonium methosulphate and its sulphonated analogue N-methylphenazonium-3-sulphonate (PMSH) and ubiquinol1 are all oxidized by nitrate reductase via a haem-dependent, endogenous quinone-independent, 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive pathway. Approximate→H+/2e− stoichiometries were zero with Diquat radical, an electron donor, 1.0 with reduced N-methylphenazonium methosulphate or its sulphonated analogue, both hydride donors, and 2.0 with ubiquinol1 (QH2), a hydrogen donor. It is concluded that the protons appearing in the medium are derived from the reductant and the observed→H+/2e− stoichiometries are accounted for by the following reactions occurring at the periplasmic aspect of the cytoplasmic membrane.: [Formula: see text]


2001 ◽  
Vol 67 (6) ◽  
pp. 2734-2738 ◽  
Author(s):  
Fredrik Levander ◽  
Peter Rådström

ABSTRACT To study the influence of phosphoglucomutase (PGM) activity on exopolysaccharide (EPS) synthesis in glucose- and lactose-growingStreptococcus thermophilus, a knockout PGM mutant and a strain with elevated PGM activity were constructed. ThepgmA gene, encoding PGM in S. thermophilusLY03, was identified and cloned. The gene was functional inEscherichia coli and was shown to be expressed from its own promoter. The pgmA-deficient mutant was unable to grow on glucose, while the mutation did not affect growth on lactose. Overexpression of pgmA had no significant effect on EPS production in glucose-growing cells. Neither deletion nor overexpression of pgmA changed the growth or EPS production on lactose. Thus, the EPS precursors in lactose-utilizing S. thermophilus are most probably formed from the galactose moiety of lactose via the Leloir pathway, which circumvents the need for a functional PGM.


1988 ◽  
Vol 170 (12) ◽  
pp. 5901-5907 ◽  
Author(s):  
R Lahti ◽  
T Pitkäranta ◽  
E Valve ◽  
I Ilta ◽  
E Kukko-Kalske ◽  
...  

1989 ◽  
Vol 264 (2) ◽  
pp. 397-402 ◽  
Author(s):  
A F Alwan ◽  
B I A Mgbeje ◽  
P M Jordan

The Escherichia coli hemD gene, encoding the enzyme uroporphyrinogen III synthase (co-synthase), was cloned into multi-copy plasmids in E. coli cells that were used to generate strains producing up to 1000 times the concentration of the synthase in the wild-type. The enzyme was purified to homogeneity from these strains in milligram amounts. The enzyme is a monomer of Mr 28,000 with an isoelectric point of 5.2 and a pH optimum of 7.8. The specific activity of the purified synthase is 1500 units/mg and the Km for the substrate, pre-uroporphyrinogen, is 5 microM. The N-terminal sequence of the enzyme is Ser-Ile-Leu-Val-Thr-Arg-Pro-Ser-Pro-Ala-Gly-, in agreement with the gene-derived protein sequence. The enzyme contains four 5,5′-dithiobis-(2-nitrobenzoic acid)-titratable groups, one reacting rapidly with the reagent and three further groups having lower reactivity. The enzyme is heat-sensitive, and during heat inactivation all four thiol groups become equally available for reaction.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 627-635 ◽  
Author(s):  
Maryann Giel ◽  
Martine Desnoyer ◽  
Jane Lopilato

Abstract A new mutation, bglJ4, has been characterized that results in the expression of the silent bgl operon. The bgl operon encodes proteins necessary for the transport and utilization of the aromatic β-glucosides arbutin and salicin. A variety of mutations activate the operon and result in a Bgl+ phenotype. Activating mutations are located upstream of the bgl promoter and in genes located elsewhere on the chromosome. Mutations outside of the bgl operon occur in the genes encoding DNA gyrase and in the gene encoding the nucleoid associated protein H-NS. The mutation described here, bglJ4, has been mapped to a new locus at min 99 on the Escherichia coli K-12 genetic map. The putative protein encoded by the bgygene has homolgy to a family of transcriptional activators. Evidence is presented that increased expression of the bglJ product is needed for activation of the bgl operon.


Sign in / Sign up

Export Citation Format

Share Document