scholarly journals Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation

2011 ◽  
Vol 194 (3) ◽  
pp. 686-701 ◽  
Author(s):  
M. D. Rolfe ◽  
C. J. Rice ◽  
S. Lucchini ◽  
C. Pin ◽  
A. Thompson ◽  
...  
2008 ◽  
Vol 71 (9) ◽  
pp. 1915-1918 ◽  
Author(s):  
ANTONIO J. DE JESÚS ◽  
RICHARD C. WHITING

In previous studies, the growth of L. monocytogenes has been modeled under different CO2 headspace concentrations; however, the inoculum cells were always in the stationary phase. In this study, the growth of L. monocytogenes under different CO2 concentrations as affected by the physiological state of the cells was investigated. Exponential-growth-phase, stationary-phase, dried, and starved cells were prepared and inoculated at 5°C into brain heart infusion broths that had been preequilibrated under atmospheres of 0, 20, 40, 60, or 80% CO2 (the balance was N2). Lag-phase duration times (LDTs) and exponential growth rates were determined by enumerating cells at appropriate time intervals and by fitting the data to a three-phase linear function that has a lag period before the initiation of exponential growth. Longer LDTs were observed as the CO2 concentration increased, with no growth observed at 80% CO2. For example, the LDTs for exponential-phase, stationary-phase, starved, and dried cells were 2.21, 8.27, 9.17, and 9.67 days, respectively, under the 40% CO2 atmosphere. In general, exponential-growth-phase cells had the shortest LDT followed by starved cells and stationary-phase cells. Dried cells had the longest LDT. Exponential growth rates decreased as the CO2 concentrations increased. Once exponential growth was attained, no retained differences among the various initial physiological states of the cells for any of the atmospheres were observed in the exponential growth rates. The exponential growth rates under 0, 20, 40, 60, and 80% CO2 averaged 0.39, 0.37, 0.23, 0.23, and 0.0 log CFU/day, respectively. Dimensionless factors were calculated that describe the inhibitory action of CO2 on the LDTs and exponential growth rates for the various physiological states.


1981 ◽  
Vol 197 (1) ◽  
pp. 233-238 ◽  
Author(s):  
G S Adrian ◽  
R W Keenan

A soluble dolichyl phosphate phosphatase from Tetrahymena pyriformis was purified about 68-fold. The enzyme appeared to be specific for dolichyl phosphate and existed in two interrelated forms, one of mol.wt. about 500000 and the other of mol.wt. about 63000. The enzyme was strongly inhibited by 5 mM-Mn2+ and was strongly stimulated by Mg2+. Tetrahymena in the exponential growth phase contained more of this enzymic activity than cells in stationary or lag phase. The dolichyl phosphate phosphatase may be loosely bound to mitochondrial membranes. Two roles proposed for this enzyme are (1) that of releasing dolichol from its phosphorylated biosynthetic form for its use in the cell as unesterified dolichol or dolichyl ester and/or (2) that of regulation of synthesis of glycoproteins or some other glycosylated compound.


Author(s):  
Tarun V Kamath ◽  
Naomi Klickstein ◽  
Caitlin Commins ◽  
Analiese R Fernandes ◽  
Derek H Oakley ◽  
...  

Abstract The accumulation of tau aggregates throughout the human brain is the hallmark of a number of neurodegenerative conditions classified as tauopathies. Increasing evidence shows that tau aggregation occurs in a “prion-like” manner, in which a small amount of misfolded tau protein can induce other, naïve tau proteins to aggregate. Tau aggregates have been found to differ structurally among different tauopathies. Recently, however, we have suggested that tau oligomeric species may differ biochemically among individual patients with sporadic Alzheimer disease, and have also showed that the bioactivity of the tau species, measured using a cell-based bioassay, also varied among individuals. Here, we adopted a live-cell imaging approach to the standard cell-based bioassay to explore further whether the kinetics of aggregation also differentiated these patients. We found that aggregation can be observed to follow a consistent pattern in all cases, with a lag phase, a growth phase, and a plateau phase, which each provide quantitative parameters by which we characterize aggregation kinetics. The length of the lag phase and magnitude of the plateau phase are both dependent upon the concentration of seeding-competent tau, the relative enrichment of which differs among patients. The slope of the growth phase correlates with morphological differences in the tau aggregates, which may be reflective of underlying structural differences. This kinetic assay confirms and refines the concept of heterogeneity in the characteristics of tau proteopathic seeds among individuals with Alzheimer’s disease and is a method by which future studies may characterize longitudinal changes in tau aggregation and the cellular processes which may influence these changes.


1982 ◽  
Vol 60 (3) ◽  
pp. 389-397 ◽  
Author(s):  
Zbyszko F. Grzelczak ◽  
Mark H. Sattolo ◽  
Linda K. Hanley-Bowdoin ◽  
Theresa D. Kennedy ◽  
Byron G. Lane

The most prominent methionine-labeled protein made when cell-free systems are programmed with bulk mRNA from dry wheat embryos has been identified with what may be the most abundant protein in dry wheat embryos. The protein has been brought to purity and has a distinctive amino acid composition, Gly and Glx accounting for almost 40% of the total amino acids. Designated E because of its conspicuous association with early imbibition of dry wheat embryos, the protein and its mRNA are abundant during the "early" phase (0–1 h) of postimbibition development, and easily detected during "lag" phase (1–5 h), but they are almost totally degraded soon after entry into the "growth" phase of development, by about 10 h postimbibition.The most prominent methionine-labeled protein peculiar to the cell-free translational capacity of bulk mRNA from "growth" phase embryos is not detected as a product of in vivo synthesis. Its electrophoretic properties and its time course of emergence, after 5 h postimbibition development, suggest that this major product of cell-free synthesis may be an in vitro counterpart to a prominent methionine-labeled protein made only in vivo, by "growth" phase embryos. Designated G because of its conspicuous association with "growth" phase development, the cell-free product does not comigrate with any prominent dye-stained band in electrophoretic distributions of wheat proteins. The suspected cellular counterpart to G, also, does not comigrate with a prominent dye-stained wheat protein during electrophoresis, and although found in particulate as well as soluble fractions of wheat embryo homogenates it is not concentrated in either nuclei or mitochondria, as isolated.


2005 ◽  
Vol 41 (1) ◽  
pp. 40-43
Author(s):  
A. M. Veselovskii ◽  
A. Z. Metlitskaya ◽  
V. A. Lipasova ◽  
I. A. Bass ◽  
I. A. Khmel

2000 ◽  
Vol 63 (2) ◽  
pp. 268-272 ◽  
Author(s):  
DANA M. McELROY ◽  
LEE-ANN JAYKUS ◽  
PEGGY M. FOEGEDING

The growth of psychrotrophic Bacillus cereus 404 from spores in boiled rice was examined experimentally at 15, 20, and 30°C. Using the Gompertz function, observed growth was modeled, and these kinetic values were compared with kinetic values for the growth of mesophilic vegetative cells as predicted by the U.S. Department of Agriculture's Pathogen Modeling Program, version 5.1. An analysis of variance indicated no statistically significant difference between observed and predicted values. A graphical comparison of kinetic values demonstrated that modeled predictions were “fail safe” for generation time and exponential growth rate at all temperatures. The model also was fail safe for lag-phase duration at 20 and 30°C but not at l5°C. Bias factors of 0.55, 0.82, and 1.82 for generation time, lag-phase duration, and exponential growth rate, respectively, indicated that the model generally was fail safe and hence provided a margin of safety in its growth predictions. Accuracy factors of 1.82, 1.60, and 1.82 for generation time, lag-phase duration, and exponential growth rate, respectively, quantitatively demonstrated the degree of difference between predicted and observed values. Although the Pathogen Modeling Program produced reasonably accurate predictions of the growth of psychrotrophic B. cereus from spores in boiled rice, the margin of safety provided by the model may be more conservative than desired for some applications. It is recommended that if microbial growth modeling is to be applied to any food safety or processing situation, it is best to validate the model before use. Once experimental data are gathered, graphical and quantitative methods of analysis can be useful tools for evaluating specific trends in model prediction and identifying important deviations between predicted and observed data.


Author(s):  
Jack Merrin

1AbstractAn automated statistical and error analysis of 45 countries or regions with more than 1000 cases of COVID-19 as of March 28, 2020, has been performed. This study reveals differences in the rate of disease spreading rate over time in different countries. This survey observes that most countries undergo a beginning exponential growth phase, which transitions into a power-law phase, as recently suggested by Ziff and Ziff. Tracking indicators of growth, such as the power-law exponent, are a good indication of the relative danger different countries are in and show when social measures are effective towards slowing the spread. The data compiled here are usefully synthesizing a global picture, identifying country to country variation in spreading, and identifying countries most at risk. This analysis may factor into how best to track the effectiveness of social distancing policies and quarantines in real-time as data is updated each day.


2011 ◽  
Vol 28 (4) ◽  
pp. 656-666 ◽  
Author(s):  
A.J. Verhulst ◽  
A.M. Cappuyns ◽  
E. Van Derlinden ◽  
K. Bernaerts ◽  
J.F. Van Impe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document