Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.

1976 ◽  
Vol 126 (2) ◽  
pp. 1017-1019 ◽  
Author(s):  
R Patel ◽  
C T Hou ◽  
A Felix
1975 ◽  
Vol 102 (1) ◽  
pp. 199-202 ◽  
Author(s):  
John H. Hubley ◽  
Alan W. Thomson ◽  
John F. Wilkinson

1977 ◽  
Vol 165 (2) ◽  
pp. 395-402 ◽  
Author(s):  
J Colby ◽  
D I Stirling ◽  
H Dalton

1. Methane mono-oxygenase of Methylococcus capsulatus (Bath) catalyses the oxidation of various substituted methane derivatives including methanol. 2. It is a very non-specific oxygenase and, in some of its catalytic properties, apparently resembles the analogous enzyme from Methylomonas methanica but differs from those found in Methylosinus trichosporium and Methylomonas albus. 3. CO is oxidized to CO2. 4. C1-C8 n-alkanes are hydroxylated, yielding mixtures of the corresponding 1- and 2-alcohols; no 3- or 4-alcohols are formed. 5. Terminal alkenes yield the corresponding 1,2-epoxides. cis- or trans-but-2-ene are each oxidized to a mixture of 2,3-epoxybutane and but-2-en-1-ol with retention of the cis or trans configuration in both products; 2-butanone is also formed from cis-but-2-ene only. 6. Dimethyl ether is oxidized. Diethyl ether undergoes sub-terminal oxidation, yielding ethanol and ethanal in equimolar amounts. 7. Methane mono-oxygenase also hydroxylates cyclic alkanes and aromatic compounds. However, styrene yields only styrene epoxide and pyridine yields only pyridine N-oxide. 8. Of those compounds tested, only NADPH can replace NADH as electron donor.


1998 ◽  
Vol 64 (3) ◽  
pp. 1091-1098 ◽  
Author(s):  
J. Benstead ◽  
G. M. King ◽  
H. G. Williams

ABSTRACT Two methanotrophic bacteria, Methylobacter albus BG8 and Methylosinus trichosporium OB3b, oxidized atmospheric methane during batch growth on methanol. Methane consumption was rapidly and substantially diminished (95% over 9 days) when washed cell suspensions were incubated without methanol in the presence of atmospheric methane (1.7 ppm). Methanotrophic activity was stimulated after methanol (10 mM) but not methane (1,000 ppm) addition. M. albus BG8 grown in continuous culture for 80 days with methanol retained the ability to oxidize atmospheric methane and oxidized methane in a chemostat air supply. Methane oxidation during growth on methanol was not affected by methane deprivation. Differences in the kinetics of methane uptake (apparent Km andV max) were observed between batch- and chemostat-grown cultures. The V max and apparent Km values (means ± standard errors) for methanol-limited chemostat cultures were 133 ± 46 nmol of methane 108 cells−1 h−1and 916 ± 235 ppm of methane (1.2 μM), respectively. These values were significantly lower than those determined with batch-grown cultures (V max of 648 ± 195 nmol of methane 108 cells−1 h−1 and apparent Km of 5,025 ± 1,234 ppm of methane [6.3 μM]). Methane consumption by soils was stimulated by the addition of methanol. These results suggest that methanol or other nonmethane substrates may promote atmospheric methane oxidation in situ.


1998 ◽  
Vol 64 (2) ◽  
pp. 520-525 ◽  
Author(s):  
J. A. Amaral ◽  
A. Ekins ◽  
S. R. Richards ◽  
R. Knowles

ABSTRACT Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (−)-α-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was;Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (−)-α-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (−)-α-pinene, γ-terpinene, or β-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (−)-α-pinene, (S)-(−)-limonene, (R)-(+)-limonene, and γ-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, α-pinene oxide, linalool, α-terpineol] and a noncyclic hydrocarbon (β-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.


2010 ◽  
Vol 192 (24) ◽  
pp. 6497-6498 ◽  
Author(s):  
Lisa Y. Stein ◽  
Sukhwan Yoon ◽  
Jeremy D. Semrau ◽  
Alan A. DiSpirito ◽  
Andrew Crombie ◽  
...  

ABSTRACT Methylosinus trichosporium OB3b (for “oddball” strain 3b) is an obligate aerobic methane-oxidizing alphaproteobacterium that was originally isolated in 1970 by Roger Whittenbury and colleagues. This strain has since been used extensively to elucidate the structure and function of several key enzymes of methane oxidation, including both particulate and soluble methane monooxygenase (sMMO) and the extracellular copper chelator methanobactin. In particular, the catalytic properties of soluble methane monooxygenase from M. trichosporium OB3b have been well characterized in context with biodegradation of recalcitrant hydrocarbons, such as trichloroethylene. The sequence of the M. trichosporium OB3b genome is the first reported from a member of the Methylocystaceae family in the order Rhizobiales.


2007 ◽  
Vol 73 (16) ◽  
pp. 5153-5161 ◽  
Author(s):  
Brajesh K. Singh ◽  
Kevin R. Tate ◽  
Gokul Kolipaka ◽  
Carolyn B. Hedley ◽  
Catriona A. Macdonald ◽  
...  

ABSTRACT We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.


Sign in / Sign up

Export Citation Format

Share Document