soluble methane monooxygenase
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 22)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Eungjin Ahn ◽  
byungchul Kim ◽  
uhn-soo Cho

Cryogenic electron microscopy (cryo-EM) has become a widely used tool for determining protein structure. Despite recent advances in instruments and algorithms, sample preparation remains a major bottleneck for several reasons, including protein denaturation at the air/water interface and the presence of preferred orientations and nonuniform ice layers. Graphene, a two-dimensional allotrope of carbon consisting of a single atomic layer, has recently attracted attention as a near-ideal support film for cryo-EM that can overcome these challenges because of its superior properties, including mechanical strength and electrical conductivity. Graphene minimizes background noise and provides a stable platform for specimens under a high-voltage electron beam and cryogenic conditions. Here, we introduce a reliable, easily implemented, and reproducible method of producing 36 graphene-coated grids at once within 1.5 days. The quality of the graphene grids was assessed using various tools such as scanning EM, Raman spectroscopy, and atomic force microscopy. To demonstrate their practical application, we determined the cryo-EM structure of Methylococcus capsulatus soluble methane monooxygenase hydroxylase (sMMOH) at resolutions of 2.9 and 2.4 angstrom using Quantifoil and graphene-coated grids, respectively. We found that the graphene-coated grid has several advantages; for example, it requires less protein, enables easy control of the ice thickness, and prevents pro-tein denaturation at the air/water interface. By comparing the cryo-EM structure of sMMOH with its crystal structure, we revealed subtle yet significant geometrical differences at the non-heme di-iron center, which may better indicate the active site configuration of sMMOH in the resting/oxidized state.


2021 ◽  
Vol 9 (12) ◽  
pp. 2423
Author(s):  
Long Jin ◽  
Chun-Zhi Jin ◽  
Hyung-Gwan Lee ◽  
Chang Soo Lee

The genus Gemmobacter grows phototrophically, aerobically, or anaerobically, and utilizes methylated amine. Here, we present two high-quality complete genomes of the strains con4 and con5T isolated from a culture of Anabaena. The strains possess sMMO (soluble methane monooxygenase)-oxidizing alkanes to carbon dioxide. Functional genes for methane-oxidation (prmAC, mimBD, adh, gfa, fdh) were identified. The genome of strain con5T contains nirB, nirK, nirQ, norB, norC, and norG genes involved in dissimilatory nitrate reduction. The presence of nitrite reductase gene (nirK) and the nitric-oxide reductase gene (norB) indicates that it could potentially use nitrite as an electron acceptor in anoxic environments. Taxonomic investigations were also performed on two strains through polyphasic methods, proposing two isolates as a novel species of the genus Gemmobacter. The findings obtained through the whole genome analyses provide genome-based evidence of complete oxidation of methane to carbon dioxide. This study provides a genetic blueprint of Gemmobacter fulva con5T and its biochemical characteristics, which help us to understand the evolutionary biology of the genus Gemmobacter.


2021 ◽  
Author(s):  
R. Kyle Bennett ◽  
Nyaradzo Dzvova ◽  
Michael Dillon ◽  
Stephanie Jones ◽  
Kelley Hestmark ◽  
...  

Natural gas and biogas provide an opportunity to harness methane as an industrial feedstock. Bioconversion is a promising alternative to chemical catalysis, which requires extreme operating conditions and exhibits poor specificities. Though methanotrophs natively utilize methane, efforts have been focused on engineering platform organisms like Escherichia coli for synthetic methanotrophy. Here, a synthetic E. coli methanotroph was developed by engineering functional expression of the Methylococcus capsulatus soluble methane monooxygenase in vivo via expression of its cognate GroESL chaperone. Additional overexpression of E. coli GroESL further improved activity. Incorporation of an acetone formation pathway then enabled the conversion of methane to acetone in vivo, as validated via 13C tracing. This work provides the first reported demonstration of methane bioconversion to liquid chemicals in a synthetic methanotroph.


Biochemistry ◽  
2021 ◽  
Author(s):  
Jason C. Jones ◽  
Rahul Banerjee ◽  
Ke Shi ◽  
Manny M. Semonis ◽  
Hideki Aihara ◽  
...  

Author(s):  
Bin Zou ◽  
Ying Huang ◽  
Pan-Pan Zhang ◽  
Xiao-Ming Ding ◽  
Huub J.M. Op den Camp ◽  
...  

The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are not only involved in methane oxidation but also in short-chain alkane oxidation. Herein, we describe Rhodococcus sp. ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source and report on horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMO) of the CuMMO family and sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear mega-plasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient R. erythropolis in a mating experiment and showed similar ethane and propane consuming activities. Finally, our findings demonstrate that horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. Importance CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient the similar ability to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane-degradation. Our results indicate that plasmids can support rapid evolution of enzyme-mediated biogeochemical processes.


Author(s):  
Christine E. Schulz ◽  
Rebeca G. Castillo ◽  
Dimitrios A. Pantazis ◽  
Serena DeBeer ◽  
Frank Neese

Sign in / Sign up

Export Citation Format

Share Document