scholarly journals Methane formation and methane oxidation by methanogenic bacteria.

1979 ◽  
Vol 137 (1) ◽  
pp. 420-432 ◽  
Author(s):  
A J Zehnder ◽  
T D Brock
2021 ◽  
Vol 265 ◽  
pp. 03008
Author(s):  
Klim Mashentsev ◽  
Viktor Glebov ◽  
Viktoriya Erofeeva ◽  
Sergey Yablochnikov ◽  
Olga Mareeva ◽  
...  

On the outskirts of cities landfill bodies are formed, the territories of which are later used in urban planning. Over the buried landfill soils which represent construction and household garbage, methane flows are formed, which worsen the environmental conditions of the territories and negatively affect the psychosomatic health of residents. The goal was to study methane emissions from various buried landfills in Moscow. Our study on urbanized ecosystems in Moscow revealed different methane emissions in the soils. Thus, over young landfill bodies, the concentration of methane in the soils was 8 -16 ppm. This led to the release of methane into the atmosphere of the capital city. In the old landfill bodies, the concentration of methane in the soil was 1-2 ppm and did not cause methane emissions into the urban atmosphere. The analysis of the obtained data revealed the absorption of methane by soils on old landfill bodies at high and very high methane oxidation (Lobochevsky, Zyuzinskaya, Brateevskaya, Kashirskoe Highway and Ochakovka Streets). For organomineral horizons of replantozems with an increased content of organic matter and a loamy granulometric composition, increased methane formation and oxidation of autochthonous gas with undetected emission were detected.In technogenic and gray-humus horizons of urbanozems, methane formation and methane oxidation were reduced.


FEBS Letters ◽  
1982 ◽  
Vol 143 (2) ◽  
pp. 323-326 ◽  
Author(s):  
Hans Joachim Perski ◽  
Peter Schönheit ◽  
Rudolf K. Thauer

1996 ◽  
Vol 76 (2) ◽  
pp. 231-243 ◽  
Author(s):  
T. A. McAllister ◽  
K.-J. Cheng ◽  
E. K. Okine ◽  
G. W. Mathison

Methane gas is produced in the rumen by methanogenic bacteria as a metabolic end product. The energy released by bacteria in the process of methane formation can be used for bacterial cell formation. Methane formation acts as an electron sink into which the hydrogen from all ruminal microorganisms drains, allowing a higher yield of adenosine triphosphate. Factors such as the type of carbohydrate in the diet, level of feed intake, digesta passage rate presence of ionophores or lipids in the diet, and ambient temperature influence the emission of methane from ruminants. Methanobrevibacter spp. appear to be the major methanogens in the rumen, but it is likely that phytogenetic analyses will identify new species. The biochemical reduction of carbon dioxide to methane is well defined, and it has been shown that interspecies hydrogen transfer between methanogens and ruminal bacteria prevents the accumulation of reduced nucleotides and the inhibition of feed digestion. The development of strategies to mitigate methane production in ruminants, without causing a negative impact on ruminant production, continues to be a major challenge for ruminant nutritionists and microbiologists. Enhancement of the reduction of carbon dioxide to acetate and direct genetic manipulation of methanogens are two interventions that may further reduce methane losses of ruminants. Key words: Methane, diet, ruminant, microbiology, methanogen


2008 ◽  
Author(s):  
Juliana L. Rose ◽  
Pedro Paulo F. Gouvêa ◽  
Cláudio F. Mahler
Keyword(s):  

Author(s):  
N. Golub ◽  
M. Potapova ◽  
M. Shinkarchuk ◽  
O. Kozlovets

The paper deals with the waste disposal problem of the alcohol industry caused by the widespread use of alcohol as biofuels. In the technology for the production of alcohol from cereal crops, a distillery spent wash (DSW) is formed (per 1 dm3 of alcohol – 10–20 dm3 DSW), which refers to highly concentrated wastewater, the COD value reaches 40 g O2/dm3. Since the existing physical and chemical methods of its processing are not cost-effective, the researchers develop the processing technologies for its utilization, for example, an anaerobic digestion. Apart from the purification of highly concentrated wastewater, the advantage of this method is the production of biogas and highquality fertilizer. The problems of biotechnology for biogas production from the distillery spent wash are its high acidity–pH 3.7–5.0 (the optimum pH value for the methanogenesis process is 6.8–7.4) and low nitrogen content, the lack of which inhibits the development of the association of microorganisms. In order to solve these problems, additional raw materials of various origins (chemical compounds, spent anaerobic sludge, waste from livestock farms, etc.) are used. The purpose of this work is to determine the appropriate ratio of the fermentable mixture components: cosubstrate, distillery spent wash and wastewater of the plant for co-fermentation to produce an energy carrier (biogas) and effective wastewater treatment of the distillery. In order to ensure the optimal pH for methanogenesis, poultry manure has been used as a co-substrate. The co-fermentation process of DSW with manure has been carried out at dry matter ratios of 1:1, 1:3, 1:5, 1:7 respectively. It is found that when the concentration of manure in the mixture is insufficient (DSW/manure – 1:1, 1:3), the pH value decreases during fermentation which negatively affects methane formation; when the concentration of manure in the mixture is increased (DSW/manure – 1:5, 1:7), the process is characterized by a high yield of biogas and methane content. The maximum output of biogas with a methane concentration of 70 ± 2% is observed at the ratio of components on a dry matter “wastewater: DSW: manure” – 0,2:1:7 respectively. The COD reduction reaches a 70% when using co-fermentation with the combination of components “wastewater: DSW: manure” (0,3:1:5) respectively.


Sign in / Sign up

Export Citation Format

Share Document